3.3 - Bases and linear independence
 University of Massachusetts Amherst
 Math 235 - Spring 2014

Recall the definition for the basis of a linear subspace V of \mathbb{R}^{n}.

Theorem 1. All bases of a linear subspace V of \mathbb{R}^{n} consists of the same number of vectors.
Definition 2. The dimension of a linear subspace V of \mathbb{R}^{n} is the number of vectors in any basis of V. We denote the dimension of V by $\operatorname{dim}(V)$.

Example 3. The dimension of \mathbb{R}^{n} is n because

Example 4. The dimension of the trivial space $\{\overrightarrow{0}\}$ is

Theorem 5. Let V be an m-dimensional linear subspace of \mathbb{R}^{n}.
(a) We can find at most m linearly independent vectors in V.
(b) We need at least m vectors to span V.
(c) If m vectors in V are linearly independent, then they form a basis of V.
(d) If m vectors in V span V, then they a form a basis of V.
(e) Any linearly independent set can be expanded to a basis.
(f) Any spanning set can be shrunk to a basis.

Example 6. Find a basis and determine the dimensions of the image and kernel of the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 2 & -5 & 6 \\
-1 & -2 & -1 & 1 & -1 \\
4 & 8 & 5 & -8 & 9 \\
3 & 6 & 1 & 5 & -7
\end{array}\right]
$$

Theorem 7 (Rank-Nullity Theorem). For any $n \times m$ matrix A, we have

$$
\operatorname{dim}(\operatorname{ker}(A))+\operatorname{dim}(\operatorname{im}(A))=m
$$

Proof.

Theorem 8. Let A be an $n \times n$ matrix. The following are equivalent.
(a) A is invertible.
(b) The linear system $A \vec{x}=\vec{b}$ has a unique solution \vec{x} for each $\vec{b} \in \mathbb{R}^{n}$.
(c) $\operatorname{rref}(A)=I_{n}$.
(d) $\operatorname{rank}(A)=n$.
(e) $\operatorname{im}(A)=\mathbb{R}^{n}$.
(f) $\operatorname{ker}(A)=\{\overrightarrow{0}\}$.
(g) The columns of A form a basis of \mathbb{R}^{n}.
(h) The columns of A are linearly independent.
(i) The columns of A span \mathbb{R}^{n}.

ADDITIONAL EXERCISES

(1) Find a basis for the image and kernel of each matrix.
(a) $\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 1 & 3 \\ 2 & 1 & 4\end{array}\right]$
(c) $\left[\begin{array}{llll}1 & 1 & 5 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 4\end{array}\right]$
(2) Can you find a 3×3 matrix A such that $\operatorname{im}(A)=\operatorname{ker}(A)$? Explain.
(3) Find a basis for, and the dimension of, the solution set of the system

$$
\begin{aligned}
x_{1}-4 x_{2}+3 x_{3}-x_{4} & =0 \\
2 x_{1}-8 x_{2}+6 x_{3}-2 x_{4} & =0 .
\end{aligned}
$$

(4) Let V be the subspace of \mathbb{R}^{4} defined by the equation

$$
x_{1}-x_{2}+2 x_{3}+4 x_{4}=0 .
$$

Find a linear transformation T from \mathbb{R}^{3} to \mathbb{R}^{4} such that $\operatorname{ker}(T)=\{\overrightarrow{0}\}$ and $\operatorname{im}(T)=V$. Describe T by its matrix A.

