4.2 - Linear Transformations
University of Massachusetts Amherst
Math 235 - Spring 2014

Recall that a vector space is a set of objects that is closed under two operations: addition and scalar multiplication.

Definition 1. A linear differential equation with constant coefficients is an equation of the form

$$
f^{(n)}(x)+a_{n-1} f^{(n-1)}(x)+\cdots+a_{1} f^{(1)}(x)+a_{0} f(x)=0,
$$

where $f^{(i)}(x)$ is the i-th derivative of $f(x)$, and a_{0}, \ldots, a_{n-1} are constants.
Theorem 2. The solutions of the differential equation

$$
f^{(n)}(x)+a_{n-1} f^{(n-1)}(x)+\cdots+a_{1} f^{(1)}(x)+a_{0} f(x)=0,
$$

form an n-dimensional subspace of C^{∞} (the set of all infinitely differentiable functions).
Example 3. Find all solutions of the differential equation

$$
f^{\prime \prime}(x)+f^{\prime}(x)-6 f(x)=0 .
$$

Definition 4. Let V and W be vector spaces. A function T from V to W is called a linear transformation if

$$
T(f+g)=T(f)+T(g) \quad \text { and } \quad T(k f)=k T(f)
$$

for all elements f, g of V and for all scalars k. For any linear transformation, we have similar concepts for image, kernel, rank, and nullity.

Example 5. Show that differentiation is a linear transformation from C^{∞} (the space of infinitely differentiable functions) to itself.

Example 6. Let I be the function defined by $I(f)=\int_{0}^{1} f(x) d x$. Show that I is a linear transformations from $C[0,1]$ (the set of continuous functions on the interval $[0,1]$) to \mathbb{R}. What is the rank of I ?

Example 7. Let V be the set of infinite sequences of real numbers, and let T be the shift map:

$$
T\left(x_{0}, x_{1}, x_{2}, \ldots\right)=\left(x_{1}, x_{2}, \ldots\right) .
$$

Show that T is a linear transformation from V to V. What is the kernel of T ? What is the image of T ?

Definition 8. An invertible linear transformation T is called an isomorphism. We say that two vector spaces V and W are isomorphic if there exists an isomorphism from V to W (or vice versa).
Example 9. Show that $\mathbb{R}^{2 \times 2}$ is isomorphic to \mathbb{R}^{4}.
Theorem 10. If $\mathfrak{B}=\left\{f_{1}, \ldots, f_{n}\right\}$ is a basis for a vector space V, then the coordinate transformation $L_{\mathfrak{B}}(f)=[f]_{\mathfrak{B}}$ is an isomorphism. In other words, every n-dimensional vector space is isomorphic to \mathbb{R}^{n}.
Example 11. Show that $T(A)=S^{-1} A S$, where $S=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, is an isomorphism from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$.

Theorem 12. Let V and W be vector spaces. For 2-4, we assume that V and W are finite dimensional.

1. A linear transformation T from V to W isn a isomorphism if and only if $\operatorname{ker}(T)=\{0\}$ and $\operatorname{im}(T)=W$.
2. If V is isomorphic to W, then $\operatorname{dim}(V)=\operatorname{dim}(W)$.
3. Suppose T is a linear transformation from V to W with $\operatorname{ker}(T)=\{0\}$ and $\operatorname{dim}(V)=\operatorname{dim}(W)$. Then T is an isomorphism.
4. Suppose T is a linear transformation from V to W with $\operatorname{im}(T)=W$ and $\operatorname{dim}(V)=\operatorname{dim}(W)$. Then T is an isomorphism.
