4.3 - MATRIX OF A LINEAR TRANSFORMATION

Definition 1. Let T be a linear transformation from a finite dimensional vector space V to itself. Let \mathfrak{B} be a basis of V. The \mathfrak{B}-matrix of the transformation T is the matrix B, which satisfies

$$
B[f]_{\mathfrak{B}}=[T(f)]_{\mathfrak{B}}, \quad \text { for every } f \text { in } V
$$

Theorem 2. Let T be a linear transformation from a finite dimensional vector space V to itself, let $\mathfrak{B}=\left\{f_{1}, \ldots, f_{n}\right\}$ be a basis for V, and let B be the \mathfrak{B}-matrix for T. Then

$$
B=\left[\begin{array}{lll}
{\left[T\left(f_{1}\right)\right]_{\mathfrak{B}}} & \cdots & {\left[T\left(f_{n}\right)\right]_{\mathfrak{B}}}
\end{array}\right]
$$

Example 3. Let T be the linear transformation from P_{2} (the set of polynomials of degree at most 2) to P_{2} defined by: $T(f)=f^{\prime}+f^{\prime \prime}$. Determine the \mathfrak{B}-matrix of T with respect to the basis $\mathfrak{B}=\left\{1, x, x^{2}\right\}$.

Example 4. Let $V=\operatorname{span}\{\cos (x), \sin (x)\}$, and let $T(f)=3 f+2 f^{\prime}-f^{\prime \prime}$ be a linear transformation from V to V. Find the \mathfrak{B}-matrix of T with respect to the basis $\mathfrak{B}=\{\cos (x), \sin (x)\}$.

Definition 5. Let V be an n-dimensional vector space and let \mathfrak{A} and \mathfrak{B} be two bases for V. The change of basis matrix from the basis \mathfrak{B} to the basis \mathfrak{A} is the matrix S (sometimes denoted $S_{\mathfrak{B} \rightarrow \mathfrak{A}}$), which satisfies:

$$
S[f]_{\mathfrak{B}}=[f]_{\mathfrak{A}}, \quad \text { for every } f \text { in } V
$$

Moreover, if $\mathfrak{B}=\left\{b_{1}, \ldots, b_{n}\right\}$, then

$$
S=\left[\begin{array}{lll}
{\left[b_{1}\right]_{\mathfrak{A}}} & \cdots & {\left[b_{n}\right]_{\mathfrak{A}}}
\end{array}\right]
$$

Example 6. Let $V=\operatorname{span}\left\{e^{x}, e^{-x}\right\}, \mathfrak{A}=\left\{e^{x}, e^{-x}\right\}$, and $\mathfrak{B}=\left\{e^{x}+e^{-x}, e^{x}-e^{-x}\right\}$. Compute the change of basis matrix $S_{\mathfrak{B} \rightarrow \mathfrak{A}}$.
Theorem 7. Let V be a finite dimensional vector space with bases \mathfrak{A} and \mathfrak{B}. Let S be the change of basis matrix from \mathfrak{B} to \mathfrak{A}. Let T be a linear transformation from V to V, and let A and B be the \mathfrak{A} - and \mathfrak{B}-matrix of T, respectively. Then A is similar to B, and $A=S B S^{-1}$.

