Gram-Schmidt
University of Massachusetts Amherst
Math 235 - Spring 2014

Definition 1. The length of a vector v is equal to $\sqrt{v \cdot v}$. The length of v is denoted by $|v|$.
Definition 2. A vector u is a unit vector if the length of the vector is 1 . Any vector v may be scaled to length 1 by dividing by the length of the vector:

$$
\frac{v}{|v|} \text { is a unit vector in the direction of } v .
$$

Definition 3. Two vectors v and u are orthogonal if and only if $v \cdot u=0$.
Definition 4. A basis $\mathfrak{B}=\left\{e_{1}, \ldots, e_{n}\right\}$ is orthonormal if every vector in the basis is a unit vector and $e_{i} \cdot e_{j}=0$ whenever $i \neq j$. That is, each vector in the basis is orthogonal to every other vector in the basis.

Theorem 5. Given a basis $\mathfrak{B}=\left\{v_{1}, \ldots, v_{n}\right\}$, one can obtain an orthonormal basis $\mathfrak{O}=\left\{e_{1}, \ldots, e_{n}\right\}$ using Gram-Schmidt orthogonalization.

The Gram-Schmidt process is as follows:

$$
\begin{aligned}
u_{1} & =v_{1} \\
u_{2} & =v_{2}-\operatorname{proj}_{u_{1}}\left(v_{2}\right) \\
u_{3} & =v_{3}-\operatorname{proj}_{u_{1}}\left(v_{3}\right)-\operatorname{proj}_{u_{2}}\left(v_{3}\right) \\
u_{4} & =v_{4}-\operatorname{proj}_{u_{1}}\left(v_{4}\right)-\operatorname{proj}_{u_{2}}\left(v_{3}\right)-\operatorname{proj}_{u_{3}}\left(v_{4}\right) \\
& \vdots \\
u_{n} & =v_{n}-\operatorname{proj}_{u_{1}}\left(v_{n}\right)-\operatorname{proj}_{u_{2}}\left(v_{n}\right)-\cdots-\operatorname{proj}_{u_{n-1}}\left(v_{n}\right),
\end{aligned}
$$

where

$$
\operatorname{proj}_{u}(v)=\frac{u \cdot v}{u \cdot u} u .
$$

The vectors u_{1}, \ldots, u_{n} form an orthogonal basis, meaning that these vectors are a basis for \mathbb{R}^{n}, and each vector is orthogonal to every other vector in the basis. To obtain an orthonormal basis, we need to rescale:

$$
e_{1}=\frac{u_{1}}{\left|u_{1}\right|}, \quad e_{2}=\frac{u_{2}}{\left|u_{2}\right|}, \quad \ldots \quad \quad e_{n}=\frac{u_{n}}{\left|u_{n}\right|}
$$

Example 6. Find an orthonormal basis for the solution space of $x_{1}+x_{2}+x_{3}+x_{4}=0$.
answer: The vectors that satisfy this equation are the vectors

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right],
$$

so a basis for the solution space is $\mathfrak{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$, where

$$
v_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right] \quad v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right] \quad v_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Applying Gram-Schmidt, we get

$$
\begin{aligned}
& u_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right] \\
& u_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]-\frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
-1 / 2 \\
1 \\
0
\end{array}\right] \\
& u_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]-\frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]-\frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}}\left[\begin{array}{c}
-1 / 2 \\
-1 / 2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]-\frac{1}{3}\left[\begin{array}{c}
-1 / 2 \\
-1 / 2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 / 3 \\
-1 / 3 \\
-1 / 3 \\
1
\end{array}\right]
\end{aligned}
$$

You may verify that $u_{1} \cdot u_{2}=u_{1} \cdot u_{3}=u_{2} \cdot u_{3}=0$. Normalizing these vectors, we obtain an orthonormal basis:

$$
e_{1}=\frac{1}{\sqrt{2}} u_{1} \quad e_{2}=\frac{1}{\sqrt{3 / 2}} u_{2} \quad e_{3}=\frac{1}{\sqrt{4 / 3}} u_{3}
$$

