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Recall that ~v is an eigenvector of an n× n matrix A if A~v = λ~v, where λ is an eigenvalue of A.
The eigenvectors associated with the eigenvalue λ are the solutions to

(A− λI)~v = ~0.

In other words, the set of eigenvectors associated with λ is the kernel of the matrix (A− λI).

Definition 1. The eigenspace associated with λ is the kernel of the matrix (A−λI) and is denoted
by Eλ:

Eλ = ker(A− λI).

Example 2. Determine the eigenspaces of the matrix A =

[
1 2
4 3

]
.

answer: We computed the eigenvalues of this matrix in the previous set of notes by finding
the roots of det(A − λI). Here’s another method to obtain the eigenvalues: in Example 15 in the

7.2 notes, we found that the characteristic polynomial of a 2× 2 matrix B =

[
a b
c d

]
is

λ2 − tr(B)λ+ det(B) = λ2 − (a+ d)λ+ (ad− bc).

Thus the characteristic polynomial of the matrix A =

[
1 2
4 3

]
, is

λ2 − 4λ− 5 = (λ− 5)(λ+ 1),

and the eigenvalues of A are −1 and 5. Now that we know the eigenvalues, we can compute the
eigenspace.

For λ = −1, we have

E−1 = ker(A+ I) = ker

[
2 2
4 4

]
= ker

[
1 1
0 0

]
.

The rows of this last matrix correspond to the equation x1 + x2 = 0, hence a vector

[
x1
x2

]
is in the

kernel of the matrix if

[
x1
x2

]
= x2

[
−1
1

]
. That is,

[
x1
x2

]
is in the kernel if and only if x1 = −x2. Thus

E−1 = span

{[
−1
1

]}
.

For λ = 5, we have

E5 = ker(A− 5I) = ker

[
−4 2
4 −2

]
= ker

[
1 1/2
0 0

]
.

Here, a vector

[
x1
x2

]
is in the kernel if and only if x1 = −x2/2. That is,

[
x1
x2

]
= x2

[
−1/2

1

]
, so

E5 = span

{[
−1/2

1

]}
.

Example 3. Determine the eigenspaces of the matrix A =

1 1 1
0 0 1
0 0 1

.
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answer: A is an upper triangular matrix, so its eigenvalues are on its diagonal: the eigenvalues
are 0 (with algebraic multiplicity 1), and 1 (with algebraic multiplicity 2).

For λ = 0,

E0 = ker(A) = ker

1 1 1
0 0 1
0 0 1

 = ker

1 1 0
0 0 1
0 0 0

 ,
and a vector

x1x2
x3

 is in the if and only if x1 = −x2, and x3 = 0. Hence

E0 = span


−1

1
0

 .

For λ = 1,

E1 = ker(A− I) = ker

0 1 1
0 −1 1
0 0 0

 = ker

0 1 0
0 0 1
0 0 0

 ,
and a vector

x1x2
x3

 is in the if and only if x2 = x3 = 0 (x1 may be any value). Hence

E0 = span


1

0
0

 .

Definition 4. The geometric multiplicity of an eigenvalue λ is the dimension of its eigenspace Eλ.

Theorem 5. If λ is an eigenvalue of A, then the algebraic multiplicity of λ is greater than or equal
to the geometric multiplicity of λ.

1 ≤ (geom. multi. of λ) ≤ (alg. multi. of λ)

Definition 6. Let A be an n×n matrix. A basis of Rn consisting of eigenvectors of A is called an
eigenbasis of A.

Theorem 7. If E1, . . . , Em are distinct eigenspaces of A, and we select one nonzero vector from
each space: ~v1 ∈ E1, ~v2 ∈ E2, . . . , ~vm ∈ Em, then the set of vectors {v1, . . . , vm} is linearly indepen-
dent.

Theorem 8. If A is an n× n matrix and A has n distinct eigenvalues, then there is an eigenbasis
for A. (Just take one nonzero vector from each eigenspace.)

Example 9. For each matrix, (i) find all its eigenvalues, (ii) find a basis for each eigenspace, and
(iii) find an eigenbasis, if you can.

a)

1 1 0
0 2 2
0 0 3

 b)

1 1 0
0 1 1
0 0 1


answer: a) Since this matrix is triangular, the eigenvalues are on the diagonal: the eigenvalues

are 1, 2, and 3.

E1 = ker

0 1 0
0 1 2
0 0 2

 = ker

0 1 0
0 0 1
0 0 0

 = span


1

0
0


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E2 = ker

−1 1 0
0 0 2
0 0 1

 = ker

1 −1 0
0 0 1
0 0 0

 = span


1

1
0


E3 = ker

−2 1 0
0 −1 2
0 0 0

 = ker

1 0 −1
0 1 −2
0 0 0

 = span


1

2
1

 .

We can take a vector from each eigenspace to obtain an eigenbasis for R3: D =


1

0
0

 ,
1

1
0

 ,
1

2
1

.

b) There is only one eigenvalue: 1, and

E1 = ker

0 1 0
0 0 1
0 0 0

 = span


1

0
0

 .

There is only one vector, and we need three linearly independent vectors to obtain a basis for R3.
There is no eigenbasis in this case.

Theorem 10. Suppose that A and B are similar.

(a) A and B have the same characteristic polynomial.
(b) rank(A) = rank(B), and nullity(A) = nullity(B).
(c) A and B have the same eigenvalues with the same algebraic and geometric multiplicities. Their

eigenvectors may be different.
(d) det(A) = det(B), and tr(A) = tr(B).


