7.3 - Eigenvectors

University of Massachusetts Amherst
Math 235 - Spring 2014
Recall that \vec{v} is an eigenvector of an $n \times n$ matrix A if $A \vec{v}=\lambda \vec{v}$, where λ is an eigenvalue of A. The eigenvectors associated with the eigenvalue λ are the solutions to

$$
(A-\lambda I) \vec{v}=\overrightarrow{0} .
$$

In other words, the set of eigenvectors associated with λ is the kernel of the matrix $(A-\lambda I)$.
Definition 1. The eigenspace associated with λ is the kernel of the matrix $(A-\lambda I)$ and is denoted by E_{λ} :

$$
E_{\lambda}=\operatorname{ker}(A-\lambda I) .
$$

Example 2. Determine the eigenspaces of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$.
ANSWER: We computed the eigenvalues of this matrix in the previous set of notes by finding the roots of $\operatorname{det}(A-\lambda I)$. Here's another method to obtain the eigenvalues: in Example 15 in the 7.2 notes, we found that the characteristic polynomial of a 2×2 matrix $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is

$$
\lambda^{2}-\operatorname{tr}(B) \lambda+\operatorname{det}(B)=\lambda^{2}-(a+d) \lambda+(a d-b c)
$$

Thus the characteristic polynomial of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$, is

$$
\lambda^{2}-4 \lambda-5=(\lambda-5)(\lambda+1),
$$

and the eigenvalues of A are -1 and 5 . Now that we know the eigenvalues, we can compute the eigenspace.

For $\lambda=-1$, we have

$$
E_{-1}=\operatorname{ker}(A+I)=\operatorname{ker}\left[\begin{array}{ll}
2 & 2 \\
4 & 4
\end{array}\right]=\operatorname{ker}\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

The rows of this last matrix correspond to the equation $x_{1}+x_{2}=0$, hence a vector $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ is in the kernel of the matrix if $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. That is, $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ is in the kernel if and only if $x_{1}=-x_{2}$. Thus

$$
E_{-1}=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\} .
$$

For $\lambda=5$, we have

$$
E_{5}=\operatorname{ker}(A-5 I)=\operatorname{ker}\left[\begin{array}{cc}
-4 & 2 \\
4 & -2
\end{array}\right]=\operatorname{ker}\left[\begin{array}{cc}
1 & 1 / 2 \\
0 & 0
\end{array}\right] .
$$

Here, a vector $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ is in the kernel if and only if $x_{1}=-x_{2} / 2$. That is, $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{c}-1 / 2 \\ 1\end{array}\right]$, so

$$
E_{5}=\operatorname{span}\left\{\left[\begin{array}{c}
-1 / 2 \\
1
\end{array}\right]\right\} .
$$

Example 3. Determine the eigenspaces of the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$.

ANSWER: A is an upper triangular matrix, so its eigenvalues are on its diagonal: the eigenvalues are 0 (with algebraic multiplicity 1), and 1 (with algebraic multiplicity 2).

For $\lambda=0$,

$$
E_{0}=\operatorname{ker}(A)=\operatorname{ker}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]=\operatorname{ker}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],
$$

and a vector $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is in the if and only if $x_{1}=-x_{2}$, and $x_{3}=0$. Hence

$$
E_{0}=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right\}
$$

For $\lambda=1$,

$$
E_{1}=\operatorname{ker}(A-I)=\operatorname{ker}\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]=\operatorname{ker}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

and a vector $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is in the if and only if $x_{2}=x_{3}=0$ (x_{1} may be any value). Hence

$$
E_{0}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} .
$$

Definition 4. The geometric multiplicity of an eigenvalue λ is the dimension of its eigenspace E_{λ}.
Theorem 5. If λ is an eigenvalue of A, then the algebraic multiplicity of λ is greater than or equal to the geometric multiplicity of λ.

$$
1 \leq(\text { geom. multi. of } \lambda) \leq(\text { alg. multi. of } \lambda)
$$

Definition 6. Let A be an $n \times n$ matrix. A basis of \mathbb{R}^{n} consisting of eigenvectors of A is called an eigenbasis of A.
Theorem 7. If E_{1}, \ldots, E_{m} are distinct eigenspaces of A, and we select one nonzero vector from each space: $\vec{v}_{1} \in E_{1}, \vec{v}_{2} \in E_{2}, \ldots, \vec{v}_{m} \in E_{m}$, then the set of vectors $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent.

Theorem 8. If A is an $n \times n$ matrix and A has n distinct eigenvalues, then there is an eigenbasis for A. (Just take one nonzero vector from each eigenspace.)
Example 9. For each matrix, (i) find all its eigenvalues, (ii) find a basis for each eigenspace, and (iii) find an eigenbasis, if you can.
a) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right]$
b) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$

ANSWER: a) Since this matrix is triangular, the eigenvalues are on the diagonal: the eigenvalues are 1,2 , and 3 .

$$
E_{1}=\operatorname{ker}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]=\operatorname{ker}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}
$$

$$
\begin{aligned}
& E_{2}=\operatorname{ker}\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]=\operatorname{ker}\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\} \\
& E_{3}=\operatorname{ker}\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -1 & 2 \\
0 & 0 & 0
\end{array}\right]=\operatorname{ker}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

We can take a vector from each eigenspace to obtain an eigenbasis for $\mathbb{R}^{3}: \mathfrak{D}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right\}$.
b) There is only one eigenvalue: 1 , and

$$
E_{1}=\operatorname{ker}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} .
$$

There is only one vector, and we need three linearly independent vectors to obtain a basis for \mathbb{R}^{3}. There is no eigenbasis in this case.

Theorem 10. Suppose that A and B are similar.
(a) A and B have the same characteristic polynomial.
(b) $\operatorname{rank}(A)=\operatorname{rank}(B)$, and nullity $(A)=\operatorname{nullity}(B)$.
(c) A and B have the same eigenvalues with the same algebraic and geometric multiplicities. Their eigenvectors may be different.
(d) $\operatorname{det}(A)=\operatorname{det}(B)$, and $\operatorname{tr}(A)=\operatorname{tr}(B)$.

