

Principles of Programming and
Computer Science

CPSC 120: Principles of Computer Science • Fall 2024 3

What is Computer Science?

• the study of the principles and use of
computers

• on the theoretical side
– models of computation
– what problems can be solved with a

given model of computation
– what problems can be solved efficiently with a

given model of computation

• on the applied side
– designing algorithms to solve problems in a variety of domains
– producing software

• not about how to use programs to accomplish tasks
• not just programming – about what programs can do

• common programming elements – variables, assignment statements, functions,
conditionals, loops, arrays

• patterns – recognizing when to use particular elements and common ways of using them
• algorithms – putting together the patterns to create a whole sketch
• syntax and semantics of Processing

• representation
• decomposition
• modularity
• abstraction

• efficiency
• complexity
• computability

CPSC 120: Principles of Computer Science • Fall 2024 4

Constructing Programs in Processing

1. What do you want to do?
(determines program structure)

• draw a fixed picture
 → static (just a list of instructions) or active mode (setup()
 and draw())

• have something that is different (or might be different)
over time

 → active mode (setup() and draw())

CPSC 120: Principles of Computer Science • Fall 2024 5

Constructing Programs in Processing

2. What kinds of elements do you have?
(determines patterns and structure of sections of code)

• things which respond to user actions
→ interaction
– mouse position → mouseX, mouseY system variables
– mouse clicks → mouseClicked() event handler function
– key presses → keyPressed() event handler function

• things which change over time
→ animation
– individual things → animation variable(s)
– many similar things animated similarly → arrays

CPSC 120: Principles of Computer Science • Fall 2024 6

Constructing Programs in Processing

2. What kinds of elements do you have?
(determines patterns and structure of sections of code)

• a complex thing to draw (3+ shapes or many steps)
→ drawing function
– what’s different for different copies? → parameters

• a self-similar thing to draw (fractals)
→ recursive drawing function
– each level adds more – additive pattern
– each level replaces what was there – replacement pattern
– L-system

CPSC 120: Principles of Computer Science • Fall 2024 7

Constructing Programs in Processing

2. What kinds of elements do you have?
(determines patterns and structure of sections of code)

• different things at different times
→ conditional
– can determine what to do based only on the current state

(animation and system variables) → on-the-spot decision
– need more information e.g. about past events → state machine

• repetition within a frame
→ loop
– one or more properties changing predictably with each repetition

→ loop with one or more loop variables
– repeat a known number of times → counting loop
– two different patterns of repetition → one loop after another
– several properties change but not all at the same time (grid

pattern) → nested loops

CPSC 120: Principles of Computer Science • Fall 2024 8

Constructing Programs in Processing

2. What kinds of elements do you have?
(determines patterns and structure of sections of code)

• things changing
→ variables (over time – animation variables, over repetition –
loop variables)
– four steps: declare, initialize, use, update

CPSC 120: Principles of Computer Science • Fall 2024 9

Constructing Programs in Processing

2. What kinds of elements do you have?
(determines patterns and structure of sections of code)

• images
– display an image
– use an image as a source of colors
– generate an image
– generate an image whose colors are based on another (image

filter)

•basic ingredients
• load image
•add image to sketch

•other ingredients
•create a new image
• load pixels to access
•update pixels if changed
•computing image (row,col) for on-screen (x,y)
•computing pixel array loc for (row,col)

CPSC 120: Principles of Computer Science • Fall 2024 10

Constructing Programs

• some of these things are specific to Processing
– static vs active mode, setup(), draw()
– system variables like mouseX, mouseY
– specific operations for drawing and working with images
– specific event-handler functions like mouseClicked()

• some of these things exist in other languages
– variables and assignment statements
– functions
– conditionals
– loops
– arrays
– the notion of event-driven programming and event handlers

the patterns of usage we studied
are not limited to Processing
(and can be generalized beyond
just creating pictures)

CPSC 120: Principles of Computer Science • Fall 2024 11

Principles and Key Concepts

Constructing programs –

• an algorithm is a series of steps for solving a problem
– algorithms are expressed in terms of constructs like variables,

assignment statements, conditionals, loops
– a program is an algorithm written in a

particular programming language

• must identify the key elements and
decide on how to represent them in
the program
– which elements to convey the scene's content
– which shapes to depict scene elements
– which variables (and what type) for animation

and loops
– which parameters (and what type) for functions

CPSC 120: Principles of Computer Science • Fall 2024 12

Principles and Key Concepts

• decomposing a task into smaller pieces is a key
problem-solving strategy

• logical thinking is important for
problem solving and for debugging

CPSC 120: Principles of Computer Science • Fall 2024 13

Principles and Key Concepts

• organizing a program into self-
contained modules makes it easier to
understand and supports reuse
– drawing functions
– generator and filter functions for images

 modules in
programs include
functions, classes,
and packages

CPSC 120: Principles of Computer Science • Fall 2024 14

// compute the evade steering vector
// pos, vel - position and velocity of boid
// maxspeed - boid's max speed
// quarrypos, quarryvel - position and velocity of quarry
PVector computeEvade (PVector pos, PVector vel, float maxspeed,
 PVector quarrypos, PVector quarryvel) { ... }

// compute the arrive steering vector
// pos, vel - position and velocity of boid
// maxspeed - boid's max speed
// target - position of the target
// threshold - distance from target at which the boid starts slowing
PVector computeArrive (PVector pos, PVector vel, float maxspeed,
 PVector target, float threshold) { ... }

// compute the wander steering vector
// pos, vel - position and velocity of boid
// maxspeed - boid's max speed
PVector computeWander (PVector pos, PVector vel, float maxspeed) { ... }

Principles and Key Concepts

• abstraction makes complex systems possible by
replacing details with key ideas
– do not need to know internal details of a module in order to use it
– for functions, only need the function header and comments

CPSC 120: Principles of Computer Science • Fall 2024 15

Principles and Key Concepts

• efficiency deals with how long it takes to carry out an
algorithm

To look up a word in the dictionary –

• start with the first word on the first page and keep
reading until you find the word you are looking for

→ the time required depends on the number of words
• open to the middle page, see whether the first word on

the page is before or after the word you are looking for,
open to the middle of the appropriate half, repeat

→ the time required depends on how many times the
number of words is divided in half

O(n)

O(log n)

CPSC 120: Principles of Computer Science • Fall 2024 16

Principles and Key Concepts

• complexity addresses the inherent difficulty of a problem
– considers how long the fastest solution will take to compute (not

how challenging it might be to figure out an algorithm)

• “easy” problems
– e.g. looking up a word in the dictionary
– time required is at most a polynomial

function of the size of the problem
• don't have to look at every element
• look at every element a fixed number of times
• look at every pair or triple of elements

• “hard” problems
– e.g. traveling salesman problem,

knapsack problem
– time required is exponential in the size

of the problem
• must look at all combinations of elements

CPSC 120: Principles of Computer Science • Fall 2024 17

Principles and Key Concepts

• computability concerns whether or not a problem can be
solved by a computer in any amount of time

• easy to come up with an efficient
algorithm

• easy to come up with an algorithm
(just try all possibilities)

• more difficult to find an algorithm fast
enough to be practical for anything
but the smallest problem sizes

• what about problems that are
difficult to find an algorithm for?

CPSC 120: Principles of Computer Science • Fall 2024 18

Challenging Problems

• there are many challenging problems where there has
been great progress (though lots of computing power is still
required)

– achieving realism in computer graphics and animation
• photorealistic appearance
• modeling and rendering of hair, fur, feathers, cloth, muscles, and skin
• modeling and rendering of plants, trees, and terrain
• complex group behavior

– mimicking intelligence
• expert knowledge
• conversation (chatbots)
• game playing
• learning
• image recognition and understanding

– self-driving cars
...to name a few highly-visible areas

CPSC 120: Principles of Computer Science • Fall 2024 19

Impossible Problems

Some problems cannot be solved by a computer, no matter
how clever the programmer.

• halting problem
– assume you can write a program H which tells you if a program

ever finishes running (halts) or not
– create program K which takes another program P as input

• K runs H on P to determine if P halts
• if H says “yes, P stops”, K goes into an infinite loop
• if H says “no, P never ends”, K terminates

– what happens if you run K on itself?
• if H says that K halts, K goes into an infinite loop
• if H says that K doesn’t halt, K halts

– this paradox means that H cannot exist

CPSC 120: Principles of Computer Science • Fall 2024 20

Where To Go From Here

Want to learn more about Processing?
• there's more in the book that we didn't cover

Want to learn more about programming the natural world?
(physics, particle systems, autonomous agents, cellular automata, fractals,
genetic algorithms, neural networks)

• free (*) online book The Nature of Code by the author of
Learning Processing – http://natureofcode.com
– prerequisites: chapters 1-12 of Learning Processing (the main

new material is objects, chapter 8)
– (*) donation encouraged

Want to learn more about programming in general?
• take CPSC 124
• free online Java textbook Introduction to Programming

Using Java – http://math.hws.edu/javanotes/

