Lab 11

use dist for the o If there S|
“within ... pixels"\ Othe
or “more than ... \| *° Ot

pixels” conditions i

* Fill in steps 2a and 2b so that each boid chooses between four behaviors: avoid obstacles, avoid
with other boids, seek, and wander. The particular action is chosen as follows:

he boid is near the mouse (within 200 pixels), seek on the mouse position.

for the conditions
outlined in red,
use the
magnitude of the
steering vector

and coheslon)

should amve at the food
< Otherwise the prey boid should wander.

< If the prey boid is within 250 pixels of the predator, it should evade the predator and flock with the
other prey boids. (This means four behaviors are active in this step — evade, separation, alignment,

neal the food (more than 100 pixels away) and there's|potential for

idJavoid the collision.
ungry (hunger is 0 or lower) and is within 300 pixels of the food, it

nothing to pursue or avoid. You can get the magnitude
compute the obstacle avoidance steering vector and it

For collision avoidance and obstacle avoidance, the computed steering vector has a magnitude of 0 if there is

of a Pvector v with v.mag() — so, for example, if you
has a magnitude of 0, there's no obstacle to avoid.

// compute the evade steering vector
/7 pos, vel - position and velocity of boid
// maxspeed - boid's max speed

// pos, vel - position and velocity of boid

// radius, angle - define this boid's neighborhood
// maxspeed - boid's max speed

// quarrypos, quarryvel - positions and velocities of

// pursuerpos, pursuervel - position and velocity of pursuer
PVector computeEvade (PVector pos, PVector vel, float maxspeed, PVector pursuerpos, PVector pursuervel) { .

// compute the pursue steering vector - pursues the nearest quarry within the boid's neighborhood

potential quarries

PVector computePursue (PVector pos, PVector vel, float radius, float angle, float maxspeed, PVector[] quarry

These functions return a steering vector with a magnitude of 0 if there is nothing in sight. <:|

66

Lab 12

 use the patterns from class

« Modify the drawing function to instead take the shape colors from the image. Put the loadPixels() step at

the beginning of your drawing function instead

of in setup(). Refer to the slides and examples from class

for the pattern and formulas for converting a point (x,y) in the drawing window to a pixel (row,col) in the

image and then getting the color of that pixel.

Wed Reading:

« Learning Processing, sections 15.5-15.6
« Learning Processing, section 15.10

Materials from class:

important: to avoid
(ixiy) confusion, use (xy)
row toreferto
dh coordinates on the
(xyy screen and

(1ow,col) to refer o
coordinates within
animage

* assumptions/notation
image has size img.width X img.height
+ replace img with the name of the image variable
image is positioned in the drawing window with comer (ix,iy)
and dimensions dw X dh
* to transform a drawing window coordinate (x,y) into an
image pixel coordinate (row,col) —
y-iy)*ing. height/dh
x-1ix)*img.width/dw

* pixels are stored in the array img. pixels

pirel at posion (row,col)is stored in slot
oc = row*ing widthscol

|:> « slides: using images as a source of colors
« examples: (using images as a source of colors)
> colored dot
« handout: in-class exercises (solutions: 1, #2)
> images to use

7/ draw colored spot following the mouse - color is taken from the ima
7/ under the mouse

/7 (row,col) corresponding to the mouse's location in the image
/7 rou = (y-iy)*img.height/dh, col = (x-ix)*img.width/dw
// (x,y) is the mouse position
/7 image's corner (ix,iy) is at (0,0),
/7 image's displayed size dw x dh is width x height
int row = (mouseY-@)*img.height/height;
int col = (mouseX-0)*img.width/width;
~| 7/ location in pixels array corresponding to (row,col)
int loc = row*img.width+col;

ill(ing.pixels[loc]);
stroke(0);
ellipse (mouseX, mouseY, 40, 40) ;

Lab 12

loading images — 2 steps:

add the image file to the sketch: Sketch - Add File...

« this copies the image file into the sketch folder so that everything the
sketch needs to run is contained together

use only the filename with LoadImage() e.g. loadImage(“marmot.jpg”)
do not use an absolute pathname (such as

/classes/cs120/images/marmot . jpg) because the sketch won't run if copied
to a different computer system

« do not use a URL (such as
https://math.hws.edu/bridgeman/courses/120/f24/inclass/images/marmot . jpg)

because the sketch won’

CPSC 120: Principles of Computer Science « Fall 2024

Lab 12

t run if that URL isn't available

 use the patterns from class

« Create a filter function for your image filter — name it fitter (substituting the name of the filter for filter)
and include the parameters listed in the description below. The body of the function will be very similar to
the brighten and green/blue swap filters from class — just the details of how you compute the destination

colors will be different.

Mon Reading:

« Learning Processing, sections 15.7-15.8
« Learning Processing, section 15.9 (optional)

Materials from class:

 slides: cumments on lab 10
 slides: images and image filters

Example — Defining a Filter Function

PInage instead of void
source image as parameter

parts (and optionally add

« examples:
© random image #1 (generating images, gener
once)
© random image #2 (generating images, gener
every frame)
> brighten #1 (image fitter, apply filter once)
 brighten #2 (image filter, apply filter in every fi
« handout: jn-class exercises (solutions: #1 — swap

filter, #2 — generating gradient image)
o images to use ; E

parameters) to customize;
the rest is a set templ

o o Hork g wich s e sae 20 e sutcs

T=TlocT) vamt;
(oc))+amt;
[loc))+amt;

e Loapirs)

- . i mmvme pixel colors for the destination image
) P S e B
, ey ‘
H Y
return the generated image
CPSC 120: Principles of Computer Science + Fal 2024 [N S,

v et}

CPSC 120: Principles of Computer Science « Fall 2024

Lab 12

« follow the instructions in the lab handout

include all the specified parameters for the drawing functions for
the artistic effects

effect example function parameters how it works

Cover the drawing area with rectangles, taking
the fill and stroke colors of each rectangle from
the image pixel corresponding to the center of
the rectangle. You may need to turn off
smoothing to avoid slight gaps between the
rectangles. Note: be careful not to draw
rectangles that extend past the edge of the

« source image
« position and size
pixellate of the drawing
area

. image.

* rectangle size v inction should work with any size
rectangle, but experiment with different values
to find one with a pleasing effect to use in your
sketch.

L

leave a border around the edge — the image should not fill the
window

Your task is to create a sketch named lab12a which applies an
artistic effect to an image. Choose one of the artistic effects
described in the "Artistic Effects” section below.

|::> Leave a border of the background showing as in the example. (The
background can be any color; it doesn't have to be black.) Create a
drawing function for the artistic effect.

CPSC 120 Principle.

Midterm Project

* the main issue was missing requirements

read the handout carefully as you are planning

check over the handout again along the way and when you are
done

CPSC 120: Principles of Computer Science « Fall 2024 72

Lab 12

« credit the source of the images used in #3

You are also free to use other images but you must have permission for all images that you use. This
means that the image is one of the provided images above, a picture you took or created, a picture someone
else took or created and gave you permission to use, or an image that you found on the Internet that explicitly
allows you to use it. There are many public domain images that are fine to use, but not every image is public
domain! Include a comment in your sketch identifying the source for each image that you use. (Give the URL if
the image came from the Internet.)

CPSC 120: Principles of Computer Science « Fall 2024 71

Midterm Project

* commonly missed elements

« Include a comment at the beginning of the sketch with your name and a description of your sketch —
identify the sequence of actions, what triggers each new stage, and the final goal. Also identify how you
satisfy the requirements marked with (*) above — include a comment at the beginning of the sketch or
just before the relevant section of code, as appropriate.

o Put only drawing into drawing functions — do updates in draw(), not in a drawing function.

« At least three actions that last for two or more stages (but not every stage). In the demo, the these
actions are:

1. The pendulum keeps swinging after it hits the floating platform. (stages 3-5)
2. The floating platform swings after it is hit by the pendulum. (stages 4-5)
3. The red ball keeps bouncing after it falls off the end of the ramp. (stages 3-5)

It is not necessary for a multi-stage action, once started, to last for all of the remaining stages (though
that is the case in the demo). For example, it would be fine for an action to only last for stages 2 and 3.

* At least two instances of some compound thing (three or more shapes) drawn by a function with
appropriate parameters. The instances must be interactive or animated in different ways; not interactive
or animated is a possibility for one instance. (Not satisfied by the demo.)

CPSC 120: Principles of Computer Science « Fall 2024 73

