L-Systems Pattern

« create a drawing function for the F production rule

- create drawing functions for any other production rules

f/ production rule: F -> F-F++F-F
/4 gle: 60 degrees cale factor 1/3
/i levels of recursion remaining
is the length of the line to draw 'i\\\?DIVISION WARNING! Writing
void drawF (int depth, float len) { (1/3)*Len, while mathematically
if (depth == 8) { correct, will result in 0! If you want
// do the 'F' action - draw Lline, move turtle division to include decimal points,
line(e@, @, len, 0); use floats - (1.0/3.0)*1len
translate(len, 0);
} else {
herwise o at the rule states: F-F++F-
;}aw;(l“je;;hfi,(lle:‘,f];); l._r 2 chicie i i - scale factor 1/3 means len/3
rotate(radians(-60)); - rotation angle 60 degrees

g;::iﬁ?fﬁs:‘a:r(ég?f)/ * the F production rule becomes a drawing function
rotate(radians(60));

drawF(depth-1, len/3);
rotate(radians(-60));
drawF (depth-1, len/3);

.

// production rule: F -> ..
void drawF (int depth, fleoat len) {
if (depth == 8) {
// 'F' means draw line, move turtle
line(6, ©, len, 0); _ yordinates are interpreted relative to the turtle

0); so this will draw a line in front of the turtle rather

translate(len,
than in the upper left cormer of the window

| else {
depth decreases do what the right side of the rule states: ..
by 1 } » reference to a production symbol — call to that function (depth
decreases by 1, len may be adjusted by fractal's scale factor)
| * +,-- rotate(a) or rotate(-a) (angle a depends on the fractal)
= [, 1=+ pushMatrix(), popMatrix()

LR 120: Principles of Computer Science = Fall |

* any other production rules also become drawing functions

// production rule: S - ..
void drawS (int depth, float len) {
if (depth == 0) {
do the action for symbol S (may be nothing)

} else {
do what the right side of the rule states: ..

} - reference to a production symbol - call to that function (depth
} decreases by 1, 1en may be adjusted by fractal's scale factor)
<+,

- - rotate(a) or rotate(-a) (angle a depends on the fractal)
RopMatrix()

= [1> pushMatrix(),

« create a drawing function for the whole pattern

« call the drawing function to actually draw the fractal

17 (Y of the initial t
len is t
depth 1s

oid drawSnowflake (int x, int y, flc

pushMatrix();

|
riangle _L
recur

at len, int depth) {

triangle

the maximum de sion

> initial positien and orientation -

turtle

ould start a - left corner of the
initial triangle, facing
translate(x, y);
rotate(radians(e)); [/ turtle is already facing right

* create a drawing function for the whole pattern
* parameters for position, size, and maximum depth

/ generator: F++F++Fe+
drawF (depth, len);
rotate(radians(6a));
rotate(radians(60));
drawF (depth, len);
rotate (radians(60))

totatelradians(68)); // set up turtle initial position and orientation

drawF (depth, len);
rotate(radians(68)); translate(x,y); =

rotate(radians(6e)); rotate(radians(..));

void drawFractal (int x, int y, float len, int depth) {
pushMatrix();

turtle starts at (0,0), facing right
- translate(dx,dy) to move turtle by dx.dy
= rotate(a) to turn turtle by angle a

popMatrix(); note: write translate step before rotate step

¥ carry out the generator: ..
\“\\ - reference to a production symbol = call to that
~ function (with max depth and overall size)
* +, - = rotate(a) or rotate(-a) (angle a
popMatrix(); depends on the fractal)
} * [1 pushMatrix(), popMatrix()

GRSC 120: Principles of Computer Science « R

At the End of Class

* call the whole-fractal drawing function to actually draw the fractal

void setup () {
size(600, 600);

void setup () {

}
}

void draw () {
void draw () { background(255) ;

drawSnowflake(108, 150, 408, 4);

drawFractal(-);)

}

Hand in whatever you have done during class, even if a sketch is incomplete.

+ Make sure each sketch is named as directed and has a comment with the names of
your group. Also be sure to save your sketches! (in Linux, this should be in your

sketchbook ~/cs120/sketchbook)
+ Copy the entire directory for each sketch (not only

the .pde file) into your handin

directory (/classes/cs120/handin/username). You only need to hand in one copy
for the group. (If you are running Processing on your computer instead of using the

Linux virtual desktop, you will need to use FileZilla

to copy the sketches.)

Exercises

Create a new sketch called sketch_241016a which draws
a quadratic Koch island. This fractal is generated as
follows:

generator: F+F+F+F+
F -~ F+F-F-FF+F+F-F
angle: 90 degrees
scale factor: %

turtle starting point: upper left corner of the initial
square facing right

The results with several successive values of depth are
shown.

Choose a reasonable initial size and a not-too-large maximum depth. (Start with a
depth of 3 or 4 and increase slowly from there as desired.) Position the fractal so that
it fits nicely in the drawing window.

Continue to work on the in-class exercises from last Friday (additive and replacement
pattern fractals).

If you have time, experiment a bit: save a copy of your sketch from #1 as sketch_241016b

and -

Add some color: set the stroke color to black before you start the generator and
at the beginning of the production rule in drawF, then set it to red just before the
last call to drawF in the production rule. What happens?

Add randomness: instead of always using the same angle, use a random angle
near that value (add or subtract a small random amount from the desired angle).
What happens? (Use random() to generate random numbers and put
randomSeed () in draw() to generate the same sequence of random numbers in
each frame. See the Processing API: https://processing.org/reference)

Add randomness: instead of always moving/drawing by the same amount when a
line segment is drawn, add or subtract a small random amount from the desired
length. What happens? (You'll need to use a local variable to temporarily store
the random number so the line length and the amount moved are the same. Use
the pattern shown below - this is the same pattern introduced for the local
variables in parametric equations. Hint: you can avoid having to choose between
adding or subtracting by generating a random number between a negative value
and a positive value - replace amt in the example below with your desired value.)

{
float amount = random(-amt,amt);
line(0,0, len+amount,0);
translate(len+amount,0);

}

Try some different angles. (Start with a value not too different from the angle
given in the exercise.) What happens?

	L-Systems Pattern
	At the End of Class
	Exercises

