Behavioral Animation

Emergent Behavior

Emergent behavior is complex behavior which arises from

* the application of simple rules, and
* the interaction of (only) nearby individuals

- global patterns from local behavior
- organization without a leader

Many natural systems display emergent behavior.

https://en.wikipedia.org/wiki/Emergence =

LV SO — http://www.pbs.org/wgbh/nova/nature/emergence-examples.html .

Complex Group Behavior

https://www.youtube.com/watch?v=V4f_1_r80RY

http://www.dailymail.co.uk/news/article-2514252/Incredible-photos-ofhe-moment-TEN-
THOUSAND-starlings-fly-formation-Scottish-Borders.html

http://www.firefly.org/synchronous-fireflies.html

CPSC 120: Principles of Computer Science « Fall 2025

Boids

* a model for coordinated motion in groups of
animals

demonstrates emergent behaviors

* due to Craig Reynolds
published at SIGGRAPH 1987

° a major advance in computer animation in movies

Reynolds won a Scientific & Engineering Academy Award in
1998

demonstrated in Stanley and Stella
in: Breaking the Ice, 1987

http:// .youtube. 'watch?v=3bTq ay

first feature film use in |8 B}»_\"IFEVE&N
Batman Returns, 1992 H#k

CPSC 120: Principles of Computer Science « Fall 2025

Boids — Elements

* a basic boid has
position
velocity (captures both speed and
direction of movement)

 additional properties
maximum acceleration
maximum speed

* in groups, a boid only reacts to
its neighbors
behaviors are local
neighborhood is defined by a
distance (radius) and an angle

yspeed

vehicle

[
*

http://natureofcode.com/book/chapter-6-autonomous-agents/

CPSC 120: Principles of Computer Science « Fall 2025

Boids — Flocking/Schooling

http://www.red3d.com/cwr/boids/

¢ flocking/schooling arises from three simple steering

behaviors
4
[| | separation: steer away from your neighbors so
\ /| you don't get too close
A
‘ Lﬁ\& A alignment: steer to match velocity of

‘\>L \>/“ neighbors

4

CPSC 120: Principles of Computer Science « Fall 2025

Al \ | cohesion: steer to move towards the center of
/| your neighbors so you don't get too far apart

http://www.red3d.com/cwr/boids/

a4

Boids — Steering

* a steering vector indicates
how the boid wants to turn
represents direction and effort

« the steering vector is used to
update the boid's velocity

 a steering behavior is a
method for computing a
steering vector

desired velocity

vehicle

current
velocity

target
desired
velocity

seek
behavior

CPSC 120: Principles of Computer Science « Fall 2025

Net Steering Force

« steering vectors for multiple

behaviors can be combined into the

net steering vector (or force)

net steering force is used to update the

boid's velocity

/SN
/

n
o
+
n

I
et
+
~
+
/
I

htp:

tutsplu

CPSC 120: Principles of Computer Science « Fall 2025

movement-manager--gamedev-4278

Seek E|

» seek steers the boid to head towards the target at its
maximum speed

Arrive and Pursue E|

06"\'6
D
@

len = max speeq

target
P — 9

esired velocity
vehicle ‘é*

steering \

CPSC 120: Principles of Computer Science » Fall202s http: gent: 46

Flee and Evade E|

- flee is the opposite of seek
< evade is the opposite of pursue

In both cases, the goal is to steer so as to be heading away
from the target as fast as possible.

flee path
quarty
future
current

now pussuit

flee steering gt

desired
velocity
(flee) velocity

(seeks) target

‘evasion

http://www.red3d.com/cwr/steer/

m— (4C99 =

CPSC 120: Principles of Computer Science + Fall 2025 8

« arrive is similar to seek, but the boid slows once it is
within the stopping radius near the target

* pursue is similar to seek, but uses an estimate of the
interception point instead target's current position

/M
future

now pursuit

LT
(U

‘evasion

semm———== http://www.red3d.com/cwr/steer/ ——
CPSC 120: Principles of Computer Science + Fall 2025 gdc99 47

Variations on the Theme

- offset pursuit
seek target is some distance d to the
side of the predicted future position
of the target

° interpose
seek a target point between two other boids

* hide

seek a target on the opposite side of an obstacle from another
boid

CPSC 120: Principles of Computer Science « Fall 2025 49

Obstacle Avoidance

Avoid hitting
obstacles. A

+ identify the most threatening obstacle
project region ahead of the boid
« length depends on boid's speed and agility (longer for faster / less agile)
of the obstacles intersecting the region, find the obstacle closest

Forward and Wander
« forward steers in the same direction but accelerates as
needed to reach maximum speed

« wander steers randomly, but not too randomly
implemented by seeking a point ahead of the boid and not too

to the boid

far to the side
 steer away from it
http://www.red3d.com/cwr/steer/gdc99

CPSC 120: Principles of Computer Science « Fall 2025

Combining Multiple Behaviors

CPSC 120: Principles of Computer Science « Fall 2025
Can have multiple behaviors in effect at once —
+ flocking combines separation, alignment, and cohesion
also forward or wander or another movement element

Unaligned Collision Avoidance

Avoid collisions
between boids.

« identify potential collisions
determine the point of nearest approach for each other boid
+ assume boids continue with their current velocities
- steer to avoid the location of the nearest such potential

CPSC 120: Principles of Computer Science « Fall 2025

52

collision

http://www.red3d.com/cwr/steer/gdc99

CPSC 120: Principles of Computer Science « Fall 2025

Combining Multiple Behaviors

Can choose between different behaviors at different times —

* shadow
if close to target, use alignment to match velocity
otherwise arrive at target

« leader following — followers want to stay near the leader
without crowding the leader or each other or getting in the
leader's way

if follower is in a region in front of the

leader, it steers away from the leader's path Q\ %
otherwise, followers arrive at a point just

behind the leader B
separation is used to keep followers out ;; 2

of each other's way

CPSC 120: Principles of Computer Science + Fall 2025 http://www.red3d.com/cwr/steer/gdc99 54

https://www.youtube.com/watch El

Avrtificial Fish 2/=VpZ93n5QQUQ

* Tu and Terzopoulos, 1994

“Imagine a virtual marine world inhabited by a variety of realistic fishes...”

collision detection

Predator detection

i 1 s v
push the memory

20 10 the next layer

Behavioral Animation E|E|

« combines steering and other actions with a higher-level
“pbrain” to determine what action(s) to do in what situations

The Lion King (1994)

https://www.youtube.com/watch?v=NofrY8eB3u4

The Lord of the Rings -

(2001-2003)

https://www.youtube.com/watch?v=rCZ3SN65kls

Shrek 2 (2004)

CPSC 120: Principles of Computer Science « Fall 2025 55

Ants

¢ basic behaviors
follow pheromone trail %é-

if another ant is met, slow down and ‘;?\é
turn aside

Modeling Ant Behavior

Asmy ants of the specles Eciton burcheli form thre lanes.

of rafic, with incoming ants carrying food flanked by two s
Ianes of ouigoing ants. AL right, army ants were fim —

y followed a pheromone trai arrows S e
indicats interactions between five outgoing o . —— .
ants (blue) and an ingoming anl (orange). / — > L

Pheromane trail NG J
st e = e oN A - Foon
7.)
R " SRRk Each dof represents two hundreaths of a second
¢ Actalsizeof . burcheli workerant NP e g

Tu, Terzopoulos, “Artificial Fishes: Physics, Locomotion, Perception, Behavior”, SIGGRAPH '94
CPSC 120: Principles of Computer Science « Fall 2025 iggraph. i i :_life/fish.ntm

http://www.nytimes.com/imagepages/2007/11/12/science/2007113_TRAFFIC_GRAPHIC.html|
T ———

CPSC 120: Principles of Computer Science « Fall 2025 57

Boids in Processing

 velocity is represented by a vector
has both direction and magnitude

/) \\

same magnitude, different magnitude, ‘same magnitude,
iflerent direction same direction same direction

N

<

yspeed

A
%,

xspeed

vehicle

* boid's position and velocity are variables of type PVector

PVector position;

PVector velocity; instead of

we'll use

float x, y;
float xspeed, yspeed;

.X and .y to access the x and y components

position.x // x velocity.x // xspeed
position.y //y velocity.y // yspeed
CPSC 120: Principles of Computer Science + Fall 2025 g okl © -agent 6 58

void draw () {
// 1 - draw scene
background (255) ;
drawBoid(pos, vel, 255, @, 0);

f/ 2 - compute net steering force

// a - compute steering force for each hehiiigi,,//’//
P wander = computeWander (pos,vel);

’ combine forces (one behavior)

PVe steer = new PVector(0,0);

steer.add (wander)
[/ © - limit the size of the force that can be applied
steer.limit(maxforce);

// 3 - update boid's velocity
// @& - add net steering force
vel.add(steer);

// b - limit boid's max speed
vel.limit(maxspeed);

// 4 - update boid's position
// a - update position by adding velocity
pos.add(vel);

// b - wrap at edges of window

if (pos.x > width) {

pos.x = 08

} else if (pos.x < 8) {
pos.x = width;

¥

if (pos.y > height) {
pos.y = 0;

} else if (pos.y < 0) {
pos.y = height;

we'll use a library of behaviors
(provided code) to get the
steering force for each desired
behavior — won't need to
compute them directly

the topics exercises involve
only step 2 — the rest of the
sketch is provided code that
you can use as-is

}
T 60

Boids in Processing

* draw() contains four steps —
draw the scene

compute the net steering force —
« get the steering force for each behavior
+ combine the forces
« limit the size of the force

update boid's velocity
+ add the net steering force to the velocity
* limit the max speed

update boid's position
« add the velocity to the position
« wrap at the edges of the window

three patterns for combining
forces, depending on whether
there is just one behavior,
multiple behaviors active at
once, or action selection to
choose active behavior(s)

position = position + speed; = position = position + velocity;

speed = speed + acceleration;

velocity = velocity + net steering force;

CPSC 120: Principles of Computer Science « Fall 2025

// 2 - compute net steering force
// a - compute steering force for each behavior
wander = computeWander (pos,vel);

// b - combine forces (one behavior)

steer = new PVector(6,0)}

Combining Forces

one behavior — get the

steer.add(wander) ;
// © - limit the size of the force that can be applied
steer.linit(maxforce);

steering force and add to
steer

// 2 - compute net steering force
/I a - compute steering force for each behavior

wander = computeWander (pos,vel);

e seek = computeseek(pos,vel,new PVector(mousex,mousey));
// b - combine forces (weighted sum)

Vector steer = new PVector(0,0); T~ T
wander. setMag(1.2); ‘.__/»_//_,,_</—~/—’”"/—</_</—’/_</—
seek.setMag(1);

steer.add(wander) ;

steer.add(seek);

/[¢ - limit the size of the force that can be applied
steer.limit(maxforce);

multiple behaviors active at the
same time — get the steering
force for each behavior, adjust
the weight of each behavior,
(setMag), and add the scaled
force to steer

setMag sets the length of the
vector — defines the weight of that
behavior in the net steering force

// 2 - compute net steering force
// a - compute steering force for each behavior
wander = computeWander (pos, vel);
)~ seek = computeSeek(pos, vel, new PVector (mouseX, mouseY));
- combine forces (action selection)
tor steer = new PVector(e, @);
if (pos.x < width/2) { // wander in the left side of the window
steer.add(wander);
} else { // seek in the right side of the window
steer.add(seek);

¥
// c© - limit the size of the force that can be applied
steer.limit(maxforce);

Ay

relative to the others

(all same magnitude = all contribute
equally, regards of the actual value of
the magnitude)

choosing between
behaviors — get the steering
force for each behavior,
then conditionally add
steering forces to steer
————————

CPSC 120: Principles of Computer Science « Fall 2025

61

