

CPSC 120: Principles of Computer Science • Fall 2025 91

Cellular Automata

• another example of systems where
simple short-range rules give rise to
complex emergent behavior

natureofcode.com/cellular-automata/
https://en.wikipedia.org/wiki/Rule_110
https://plato.stanford.edu/entries/cellular-automata/
https://www.forbes.com/sites/startswithabang/2017/09/26/it-from-bit-is-the-universe-a-cellular-automaton/
https://www.wolframscience.com/nks/notes-6-8--structures-in-the-game-of-life/ CPSC 120: Principles of Computer Science • Fall 2025 92

Cellular Automata

A cellular automaton has four key elements:

• a collection of cells arranged in a grid
– there can be any (finite) number of dimensions

• each cell has a state
– there are a finite number of possible states

• each cell has a neighborhood
– typically all cells adjacent to that cell

• a ruleset defining how a cell’s state changes from one
generation to the next

natureofcode.com/cellular-automata/

CPSC 120: Principles of Computer Science • Fall 2025 93

Elementary CAs

• the simplest grid is a 1D line of cells

• the simplest set of states is two states – 1/0, on/off,
true/false, alive/dead

• the simplest neighborhood is the two immediate
neighbors (left and right)

natureofcode.com/cellular-automata/ CPSC 120: Principles of Computer Science • Fall 2025 94

Elementary CAs

• the ruleset defines how a cell’s state changes from one
generation to the next

natureofcode.com/cellular-automata/

CPSC 120: Principles of Computer Science • Fall 2025 95

Elementary CAs

• the evolution over time can be shown by drawing each
generation on successive rows, using black for 1 and
white for 0

natureofcode.com/cellular-automata/ CPSC 120: Principles of Computer Science • Fall 2025 96

Elementary CAs

natureofcode.com/cellular-automata/

CPSC 120: Principles of Computer Science • Fall 2025 97

Elementary CAs

natureofcode.com/cellular-automata/

Different rulesets lead to different kinds of behaviors.

• class 1 – uniformity
– after enough time, every cell

ends up in the same state

• class 2 – repetition
– after enough time, cell states

cycle through a repeating
pattern

• class 3 – random
– no discernable pattern

• class 4 – complexity
– repetitive patterns appear

randomly

CPSC 120: Principles of Computer Science • Fall 2025 98

2D Cellular Automata

• the line of cells becomes a grid of cells
• the neighborhood contains all adjacent cells

natureofcode.com/cellular-automata/

CPSC 120: Principles of Computer Science • Fall 2025 99

Conway’s Game of Life

• John Conway, 1937-2020
– British mathematician
– known for

• the Game of Life
• combinatorial games (sprouts, phutball, Conway’s

soldiers, angels and devils)
• the Doomsday algorithm for determining the day of

the week for a given date
• results in a variety of other areas (geometry,

geometric topology, group theory, number theory,
algebra, analysis)

CPSC 120: Principles of Computer Science • Fall 2025 100

Conway’s Game of Life

Rules –

• a living cell (state 1) dies (state 0) if –
– it has four or more living neighbors (overpopulation)
– it has one or fewer living neighbors (loneliness)

otherwise it remains alive
• a dead cell (state 0) comes to life (state 1) if –

– it has exactly three living neighbors
otherwise it remains dead

natureofcode.com/cellular-automata/

CPSC 120: Principles of Computer Science • Fall 2025 101

Conway’s Game of Life

Common patterns –

• still lifes
– fixed patterns which do not

change from generation to
generation

• oscillators
– patterns which return to their

initial state after a finite number
of generations

• spaceships
– patterns which move across the

grid

natureofcode.com/cellular-automata/
https://www.wolframscience.com/nks/notes-6-8--structures-in-the-game-of-life/ CPSC 120: Principles of Computer Science • Fall 2025 102

Fire Simulation

• 2D cellular automaton

• three cell states
– 0 (empty) – the cell is empty ground or contains a

burnt tree
– 1 (tree) – the cell contains a tree that is not burning
– 2 (burning) – the cell contains a tree that is burning

• the neighborhood is only the cells directly
north, south, east, west

• rules
– if a cell is empty, it remains empty
– if a cell is burning, it becomes empty

• (it only takes one time step to fully burn a tree)
– if a cell contains a tree and has at least one burning neighbor, it

catches fire with a probability pcatch

– otherwise the cell remains in the same state
http://nifty.stanford.edu/2007/shiflet-fire/

CPSC 120: Principles of Computer Science • Fall 2025 103

Fire Simulation

ht
tp

://
ni

fty
.s

ta
nf

or
d.

ed
u/

20
07

/s
hi

fle
t-f

ire
/

CPSC 120: Principles of Computer Science • Fall 2025 104

CPSC 120: Principles of Computer Science • Fall 2025 106

Implementing Elementary CAs

• a line of cells becomes an array
• two possible states means the base type is boolean

(true=1, false=0)
• initialization options

– set the middle cell to true and the rest to false
– initialize each cell randomly (true or false)

natureofcode.com/cellular-automata/

if (random(1.0) < 0.5) { … }
else { … }

CPSC 120: Principles of Computer Science • Fall 2025 107

Implementing Elementary CAs

• a ruleset can be implemented with an array
– assume the neighborhoods are always listed in the order shown

(111, 110, 101, …)

• this initializer list syntax declares an array variable ruleset, creates 8
slots, and initializes the slots all in one step

natureofcode.com/cellular-automata/

boolean[] ruleset = { false, true, false, true, true,
 false, true, false };

CPSC 120: Principles of Computer Science • Fall 2025 108

Implementing Elementary CAs

• computing the next generation

natureofcode.com/cellular-automata/

for (int i = 0 ; i < cells.length ; i = i+1) {
 boolean left = cells[i-1];
 boolean middle = cells[i];
 boolean right = cells[i+1];

 boolean newstate;
 if (left && middle && right) { newstate = ruleset[0]; }
 else if (left && middle && !right) { newstate = ruleset[1]; }
 else if (left && !middle && right) { newstate = ruleset[2]; }
 else if (left && !middle && !right) { newstate = ruleset[3]; }
 else if (!left && middle && right) { newstate = ruleset[4]; }
 else if (!left && middle && !right) { newstate = ruleset[5]; }
 else if (!left && !middle && right) { newstate = ruleset[6]; }
 else { newstate = ruleset[7]; } // !left && !middle && !right

 cells[i] = newstate;
}

this code has bugs!
do not use without
modifications!

CPSC 120: Principles of Computer Science • Fall 2025 109

Implementing Elementary CAs

• wrinkle #1 – edge cases

– what happens when i is 0? or cells.length-1?

• options for handling edge cases
– edges remain constant

• don’t update cells[0] and cells[cells.length-1]

– edges wrap around
• left for cells[0] is cells[cells.length-1]
• right for cells[cells.length-1] is cells[0]

– define special neighborhoods and rules

for (int i = 0 ; i < cells.length ; i = i+1) {
 boolean left = cells[i-1];
 boolean middle = cells[i];
 boolean right = cells[i+1];

 …
}

natureofcode.com/cellular-automata/

0 1 2 3 … cells.length-1

CPSC 120: Principles of Computer Science • Fall 2025 110

Implementing Elementary CAs

• wrinkle #2 – inconsistent update

• fix: use a separate array for the next generation

for (int i = 0 ; i < cells.length ; i = i+1) {
 boolean left = cells[i-1];
 boolean middle = cells[i];
 boolean right = cells[i+1];

 boolean newstate;
 …

 cells[i] = newstate;
}

0 0

0

neighborhood is now a mixture of
the current generation and the new
generation

{
 boolean[] newcells = new boolean[cells.length]; // same size as cells

 for (int i = 0 ; i < cells.length ; i = i+1) {
 boolean left = cells[i-1];
 boolean middle = cells[i];
 boolean right = cells[i+1];
 …

 newcells[i] = newstate; // save the new state in the next generation
 }

 cells = newcells; // replace the current generation with the new
} natureofcode.com/cellular-automata/ CPSC 120: Principles of Computer Science • Fall 2025 111

Drawing Elementary CAs

• each generation is drawn on a separate row

• is this making choices, repetition, or just a series of
steps?
– repetition

natureofcode.com/cellular-automata/

CPSC 120: Principles of Computer Science • Fall 2025 112

Drawing Elementary CAs

• what is repeated?
– drawing a row

• what differs from one row
to the next?
– the current generation
– y coordinate

• how do we start?
– initialize gen 0 with random values
– y = 0 (top of row)

• how do things change?
– compute the next generation
– y = y+height of row

[

• when do we keep going?
– as long as the current row fits in the window (repeat-as-long-as

pattern) natureofcode.com/cellular-automata/ CPSC 120: Principles of Computer Science • Fall 2025 113

Drawing Elementary CAs

• drawing one row

• what is repeated?
– drawing one cell

• what differs from one cell to the next?
– the slot in the array
– the x coordinate

• how do we start?
– slot 0
– x = 0 (left side of rect)

• how do things change?
– increment slot
– x = x + width of cell

[

• when do we keep going?
– for each slot of the array (going-through-an-array loop)

natureofcode.com/cellular-automata/

CPSC 120: Principles of Computer Science • Fall 2025 114

• declaring a 2D array variable

• creating a 2D array

• going through every slot of a 2D array
– nested loops

Implementing 2D CAs

• a grid corresponds to a 2D
array
– rows and columns

na
tu

re
of

co
de

.c
om

/c
el

lu
la

r-
au

to
m

at
a/

 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

boolean[][] cells;

cells = new boolean[rows][columns];

for (int i = 0 ; i < cells.length ; i = i+1) { // rows
 for (int j = 0 ; j < cells[i].length ; j=j+1) { // columns
 cells[i][j] = …;
 }
} CPSC 120: Principles of Computer Science • Fall 2025 115

Implementing 2D CAs

• drawing a 2D CA
– for each slot of the array, draw

a black- or white-filled rect

• for each slot of the array –

• what changes from one slot to the next?
– rows (i) – y coordinate
– columns (j) – x coordinate

na
tu

re
of

co
de

.c
om

/c
el

lu
la

r-
au

to
m

at
a/

 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

for (int i = 0 ; i < cells.length ; i = i+1) {
 for (int j = 0 ; j < cells[i].length ; j=j+1) {
 …
 }
}

CPSC 120: Principles of Computer Science • Fall 2025 116

Implementing 2D CAs

• accessing neighbors

i-1,j-1 i-1,j i-1,j+1

i,j-1 i,j i,j+1

i+1,j-1 i+1,j i+1,j+1

na
tu

re
of

co
de

.c
om

/c
el

lu
la

r-
au

to
m

at
a/

 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

CPSC 120: Principles of Computer Science • Fall 2025 117

Implementing the Game of Life

• counting the number of living
neighbors

i-1,j-1 i-1,j i-1,j+1

i,j-1 i,j i,j+1

i+1,j-1 i+1,j i+1,j+1

int numliving = 0;

if (cells[i-1][j-1]) { numliving = numliving+1; }
if (cells[i-1][j]) { numliving = numliving+1; }
if (cells[i-1][j+1]) { numliving = numliving+1; }

if (cells[i][j-1]) { numliving = numliving+1; }
if (cells[i][j+1]) { numliving = numliving+1; }

if (cells[i+1][j-1]) { numliving = numliving+1; }
if (cells[i+1][j]) { numliving = numliving+1; }
if (cells[i+1][j+1]) { numliving = numliving+1; }

