Name:

Boids Il Worksheet

Exercise 1la

In order to have 100 prey boids, which of the animation variables in starter _advboids will

become array variables?

In this case, the neighborhood radius and angle and the maximum acceleration and speed
will be species-specific (shared by all boids of the same type)rather than different for
individual boids. Consider prey and predator to be different species.

// prey

PVector preypos, preyvel; //
float preyhunger; //
float preyradius, preyangle; //

float preymaxforce, preymaxspeed; //
// predator

PVector predpos, predvel; //
float predradius, predangle; //
float predmaxforce, predmaxspeed; //
// food

float food; //
Pvector foodpos; //

position and velocity

hunger

defines what the prey can see
other prey parameters

position and velocity
defines what the predator can see
other predator parameters

amount of food left
food position

Draw a box around the following chunks of code below: (some comments have been

omitted to save space; see the provided code)

« the initialization of each animation variable that becomes an array variable

« drawing the prey boid

« updating the animation variables for the prey boid

When considering what goes into each box, note the steps 2-4 are all part of updating the
boid and logically should be kept together. Also note that the local variable steer is
involved in both step 2 and step 3 so that those steps must be kept together.

void setup () {

size(800, 800);

preypos = new PVector(random(©, width),
preyvel = new PVector(random(-1, 1),
predpos = new PVector(random(@, width),
predvel = new PVector(random(-1, 1),
preyhunger = random(100, 1000);

preyradius = 60;

preyangle = radians(135);

preymaxforce = .3;

preymaxspeed = 3;

predradius = 300;

predangle = radians(135);

predmaxforce = .1;

predmaxspeed = 2;

food = 255;

foodpos = new PVector(random(50, width-50),

random(0, height));
random(-1, 1));
random(®, height));
random(-1, 1));

random(50, height-50));

(continued on the next page)

void draw () {

// 1 - draw scene

background(255);

// food

fill(255-food);

ellipse(foodpos.x, foodpos.y, 20, 20);

// prey boid

drawBoid(preypos, preyvel, 255, 255-preyhunger, 255-preyhunger);
// predator boid

drawBoid(predpos, predvel, 0, 0, 255);

// -- update Prey -----m oo oo

if (preyhunger < 1000 &&
dist(foodpos.x, foodpos.y, preypos.x, preypos.y) < 10) {
preyhunger = preyhunger+100;
food = food-.5;

} else {
preyhunger = preyhunger-1;
¥
// update prey's position and velocity
{

// 2 - compute net steering force
// a - compute steering force for each behavior

// b - combine forces (one behavior)
PVector steer = new PVector (0, 0);

// ¢ - limit the size of the force that can be applied
steer.limit(preymaxforce);

// 3 - update boid's velocity
// a - add net steering force
preyvel.add(steer);

// b - 1limit boid's max speed
preyvel. limit(preymaxspeed);

// 4 - update boid's position
// a - update position by adding velocity
preypos.add(preyvel);
// b - wrap at edges of window
if (preypos.x > width) {
preypos.x = 0,
} else if (preypos.x < 0) {
preypos.x = width;

if (preypos.y > height) {
preypos.y = 0,

} else if (preypos.y < 0) {
preypos.y = height;

(continued on the next page)

// -- update predator

// update predator's position and velocity

// 2 - compute net steering force
// a - compute steering force for each behavior

// b - combine forces (one behavior)
PVector steer = new PVector(0, 0);

// ¢ - limit the size of the force that can be applied
steer.limit(predmaxforce);

// 3 - update boid's velocity
// a - add net steering force
predvel.add(steer);

// b - 1limit boid's max speed
predvel. limit (predmaxspeed);

// 4 - update boid's position
// a - update position by adding velocity
predpos.add(predvel);
// b - wrap at edges of window
if (predpos.x > width) {
predpos.x = 0;
} else if (predpos.x < 0) {
predpos.x = width;

}

if (predpos.y > height) {
predpos.y = 0;

} else if (predpos.y < 0) {
predpos.y = height;

}

// -- update food ----------m e e
// move food if depleted
if (food <0) {
food = 255;
foodpos = new PVector(random(50, width-50), random(50, height-50));
}
}

Exercise 1b

The rules for how each prey boid moves are given in the handout:

- If the prey boid is within 250 pixels of the predator, it should evade the predator and
flock with the other prey boids. (This means four behaviors are active in this step —
evade, separation, alignment, and cohesion.)

« Otherwise if the prey is not near the food (more than 100 pixels away) and there's
potential for colliding with another prey boid, avoid the collision.

« Otherwise if the prey boid is hungry (hunger is 0 or lower) and is within 300 pixels of
the food, it should arrive at the food.

« Otherwise the prey boid should wander.

This is already written in language that closely matches the structure of an if statement.
Identify how you are going to translate each condition into code - write the specific condition
(in Processing) that you will use in your sketch.

the prey boid is within
250 pixels of the
predator

prey boid is more than
100 pixels from the
food

prey boid is hungry

Exercise 1c

The rules for how each predator boid moves are given in the handout:

- If there's prey in sight, the predator should pursue it.
« Otherwise the predator should wander.

This is already written in language that closely matches the structure of an if statement.
Identify how you are going to translate each condition into code - write the specific condition
(in Processing) that you will use in your sketch.

there’s prey in sight

