

CPSC 225: Intermediate Programming • Spring 2025 25

Card Bingo Questions

Would using ArrayList simplify this program?

• ArrayList is simpler for collections where insert, remove
operations are needed

• arrays are simpler for fixed-sized collections and random
access

How do you shuffle arrays?

• not needed here – we only need to shuffle decks
• we’ll see later on – library method, algorithm

CPSC 225: Intermediate Programming • Spring 2025 26

Objects and Classes

Objects and classes are the next step in organizing
programs and building modules –

• we can group subroutines and variables that together
have a single whole purpose into an object
– an object is a black box which contains some state (values), with

certain ways to access or manipulate that state

• objects in a program are used to represent real-world
objects (and non-tangible things)
– the object's state represents the real object's properties
– the object's operations manipulate its state in the way that you

interact with the real world object and manipulate its properties

• a class defines an object's properties and operations
– a class provides a definition for a user-defined type

• a type involves a set of legal values and the operations that can be
applied to those value

– an object is a particular instance of a class

CPSC 225: Intermediate Programming • Spring 2025 27

Writing Classes

In Java, a class generally has one of two purposes –

• a holder of subroutines (such as main)
– all elements (subroutines, global variables, global constants) are
static

• a blueprint for creating objects
– most elements are not static (exception is global constants)

CPSC 225: Intermediate Programming • Spring 2025 28

Writing Classes

Elements of a class used to define objects –

• instance variables
– these define the object's state – values that can be different for

different objects and/or different at different times for one object

• one or more constructors
– to initialize the instance variables

• methods
– these define the operations that can be used to access and

manipulate the object's state
– may include getters and setters

CPSC 225: Intermediate Programming • Spring 2025 29

Writing Classes – Syntax

• each public class goes in its own file, with the class name
matching the file name

 /**
 * Describe the purpose of the class. (What
 * kind of thing does this class describe?)
 *
 * @author author's name
 */

 public class ClassName {
 …
 }

– convention is to start class names with a capital letter (to
distinguish from primitive types)

CPSC 225: Intermediate Programming • Spring 2025 30

Writing Classes – Syntax

• instance variables define the
object's state

 public class ClassName {
 private type varname_; // description
 …
 }

– typically private rather than
public (for encapsulation and information
hiding)

– not static
– naming conventions

• start with lowercase letter
• end with _ to distinguish from local

variables and parameters (note: this
convention is not used in the book)

– in some cases can be initialized
at the point of declaration but
more typically initialized in the
constructor

CPSC 225: Intermediate Programming • Spring 2025 31

Writing Classes – Syntax

• constructors create new objects
– responsible for any setup that is required before an object can

be used – typically initializing instance variables

 public class ClassName {
 /**
 * Description.
 */
 public ClassName (param-list) {
 …
 }
 }

– not static
– no return type or value (not even void)
– constructor name must match the class name
– can have any number of parameters (default constructor if 0)
– can have multiple constructors but it must be possible to

distinguish them by the number and/or type of their parameters

also include @param
tags for each parameter

CPSC 225: Intermediate Programming • Spring 2025 32

Writing Classes – Syntax

• methods implement operations
– access and/or manipulate object's state

 public class ClassName {
 /**
 * Description.
 */
 public return-type name (param-list) {
 …
 }
 }

– public methods are intended for use outside the class
– private helper methods support the implementation of other

methods but are not available outside the class
– not static
– naming conventions – generally same as subroutines/functions

• getters – getSomething (isSomething for boolean return values)
• setters – setSomething

CPSC 225: Intermediate Programming • Spring 2025 33

Initialization of Instance Variables

• there are three places an
instance variable can be
assigned a value
– in the declaration
– in the constructor
– in a setter or other method

• guidelines
– all variables must be initialized

before they can be used, and only
the constructor is guaranteed to
be called before another method

– to avoid sequencing problems,
instance variables should
generally be initialized in the
declaration or the constructor

• in the constructor is always possible
• must be in the constructor if the value

can’t be hardcoded
• for consistency, always initialize in the

constructor

public class Demo {
 private int a_ = 10;
 private int b_;

 public Demo (int value) {
 b_ = value;
 }

 public void setA (int value){
 a_ = value;
 }

 public void setB (int value){
 b_ = value;
 }

 public void increment () {
 a_++;
 b_++;
 }
}

CPSC 225: Intermediate Programming • Spring 2025 34

Constructors – Semantics

1

2

5

3

4

if initialized at the point of declaration,
otherwise default values are assigned

may include assignment statements to set values for the
instance variables – overwrites any previous initialization

(the values passed by the caller)

(the constructor body gains access to
the values)

CPSC 225: Intermediate Programming • Spring 2025 35

static

A good rule of thumb –

• for classes used as a holder of subroutines (such as
main), all elements are static

• for classes used as blueprints for objects, only global
constants are static

The meaning of static –
• static means there is only one copy for the program

(shared by all objects of that type)
• non-static means that each object has its own copy

