Fundamentals of Object-Oriented
Analysis and Design

Design — Fundamentals of OOAD

Example

* OOAD - object-oriented analysis and development

The idea of object-oriented programming is that the
organization of the program should match how you think
about the problem.

* a program manipulates values that represent the ideas in
the problem

classes reflect key concepts/things

« often things which need some kind of representation (data storage) in the
program, but classes can also exist to group together related functionality

instance variables store information about those things

methods provide ways to access/use/manipulate the stored
information

CPSC 225: Intermediate Programming = Spring 2025

Example

deck-of-cards

In a typical card game, each player gets a hand of cards. The deck is
shuffled and cards are dealt one at a time from the deck and added to the
players' hands. In some games, cards can be removed from a hand, and
new cards can be added. The game is won or lost depending on the value
(ace, 2, 3, ..., king) and suit (spades, diamonds, clubs, hearts) of the cards
that a player receives.

11873&picture

* things
card
hand of cards
deck R ]
 instance variables — relevant information about the things
card — value, suit
hand — the cards in the hand (and their order)
deck — the cards in the deck (and their order)
* methods — access/manipulation of the stored info
card — get value, get suit

hand — add card (at the end), add card at a position, get card at a
position, remove card at a position

deck — shuffle, deal card

https://freesvg.org/nine-of-spades-playing-card-vector-illustration
https://commons.wikimedia.org/wiki/File:Hand_of_cards.jpg
https://www.publicdomainpictures.net/en/view-image.php?image:

In a typical card game, each player gets a hand of cards. The deck is
shuffled and cards are dealt one at a time from the deck and added to the
players' hands. In some games, cards can be removed from a hand, and
new cards can be added. The game is won or lost depending on the value
(ace, 2, 3, ..., king) and suit (spades, diamonds, clubs, hearts) of the cards
that a player receives.

« things
card game
player

* instance variables — relevant information about the things
card game — the game elements (player’s hands, deck, etc)
player — their hand

* methods — access/manipulation of the stored info
card game — the main program

- “card game” is covered by the main program
- “player” is sufficiently represented by just having their hands

CPSC 225: Intermediate Programming + Spring 2025



Program Design

Other goals of object-oriented design —

modularity
because small, independent chunks are easier to understand
(and reuse)

encapsulation and information hiding

because it is easier to understand a chunk if you don't have to
deal with all the details of how it does what it does (information
hiding)

because isolating design decisions means you can change your
mind about them — or support multiple alternatives — without
changing the rest of the program (encapsulation)

- group related values together and protect the actual
variables with methods to manipulate those values

CPSC 225 Intermediate Programming = Spring 2025

Program Design Strategy, Continued

complete the design
is all of the program's functionality accounted for?
e.g. main program
classes may also exist primarily to gather together related functionality
is everything the program needs to keep track of accounted for?

may be local variables in main or another class or additional instance
variables in an already-identified class

Program Design Strategy

Goal: translate the concepts and language of the problem
into classes and methods.

identify classes — the kinds of things

a starting point is textual analysis — look for the nouns
but not every noun — some may be synonyms or things that don't need to

be represented in the program
identify instance variables — consider information storage
what values are needed to represent the class things in the
program?
identify the methods needed to access/manipulate the
data that a class stores
a starting point is textual analysis — look for the verbs
consider what makes sense for the concept

CPSC 225: Intermediate Programming = Spring 2025 6

Flip

Flip is a 2-player "strategic change-making game" published by Cheapass Games. You can find it, along with many other games, in
the Game Preserve. (If you enjoy it, considering purchasing a copy.)

Each player starts with five dice. Roll the dice, and the player with the lowest total goes first. The players then alternate turns.

On each turn, the player either flips one of their own dice or plays one of their opponent's dice. However, players may not flip the same
die twice without first playing one of the opponent's dice.

* Flipping means to turn the die to the opposite side of what is showing; since the top and bottom numbers of 6-sided dice always
sum to 7, this means that the new value of a flipped die is 7 minus the old value. (6 flips to 1, 5 flips to 2, 4 flips to 3, 3 flips to 4,
efc.)

* Playing means to put one of the opponent's dice into the middle of the table. They can then remove any number of dice whose
total value does not exceed the value of the die played. For example, if a 6 is played, up to 5 points worth of dice can be
removed from the middle.

The game continues until one player runs out of dice. The winner is the player with dice remaining, and the points scored is the sum of
their dice.

Reset and continuing playing games until a player reaches 50 points.

Your program should display sufficient output so that the players can follow and play the game. In particular, the current game state
(player 1's dice, player 2's dice, the dice in the middle, and which dice are flippable or not) should be displayed at the beginning of
each turn, the winner and the current point totals for both players should be displayed at the end of each game, and the overall winner
should be congratulated when 50 points is reached.

Your program should also perform appropriate error-checking and enforce the game rules. For example, players shouldn't be able to
pick a non-existent die to flip or play, and players may not flip an unflippable die or remove too many points' worth of dice from the
middle.

CPSC 225: Intermediate Programming + Spring 2025

CPSC 225: Intermediate Programming + Spring 2025 10



Flip

Design a program for the game Flip. Identify

classes
stored info (instance variables)
methods

CPSC 225 Intermediate Programming = Spring 2025

Class Design

distinguish between a single thing and a collection of
those things

naming convention is a singular name for the single thing and a
plural name for the collection

a class for the single thing may not be needed if it is simple
type is represented by only one piece of information
an existing type matches well

a class for the collection may not be needed if an existing type
serves well
e.g. an array for a collection of players that you iterate through to take
turns
e.g. a Deck for a collection of cards since there are specialized actions
with particular names like shuffling, dealing a card

in progress

Flip Design

class represents stored info methods
Player one player in Flip

Dice one 6-sided die
DiceColl collection of dice create with 5 dice
ection roll dice

get total of dice
flip a specific die

CPSC 225: Intermediate Programming = Spring 2025

Class Design

CPSC 225: Intermediate Programming + Spring 2025 13

a class should have a single simple well-defined purpose

don't omit writing this purpose down!

a long description, especially with lots of “and”, is a sign the
class is probably too complex and/or not well-defined

if you end up not identifying any stored information or any
methods for a class, you probably don't need it

different classes or just different objects?
is the type or nature of the stored information different, or is the
difference really just in value?
are there different methods or different method bodies?

CPSC 225: Intermediate Programming + Spring 2025 14



Class Design Class Design

How do we know if the program design is complete, and there are better designs and worse designs, but not
on the right track? always one perfect you're-wrong-with-anything-else

do you have a specific clearly defined purpose for each class?
do the instance variables and methods for a class fit that
purpose?
need-to-know basis
for classes, have you accounted for all the things mentioned in
text or when thinking about the problem?
when you have a collection of something, also consider the singular thing
contained in the collection
for instance variables, have you accounted for everything that is
important to represent about the kinds of objects you have
classes for?
have you accounted for the main program functionality and the
specific objects needed in the program?

getting the classes identified is more important than every last
instance variable or method, especially getters

CPSC 225 Intermediate Programming = Spring 2025 15

design

weigh the considerations
e.g. modularity, information hiding, encapsulation — distinct logical units
e.g does the design reflect natural thinking about the problem?
naming, organization
kind of thing vs instance of thing

CPSC 225: Intermediate Programming = Spring 2025



