

Fundamentals of Object-Oriented
Analysis and Design

CPSC 225: Intermediate Programming • Spring 2025 2

Design – Fundamentals of OOAD

• OOAD – object-oriented analysis and development

The idea of object-oriented programming is that the
organization of the program should match how you think
about the problem.
• a program manipulates values that represent the ideas in

the problem

– classes reflect key concepts/things
• often things which need some kind of representation (data storage) in the

program, but classes can also exist to group together related functionality

– instance variables store information about those things

– methods provide ways to access/use/manipulate the stored
information

CPSC 225: Intermediate Programming • Spring 2025 3

Example

• things
– card
– hand of cards
– deck

• instance variables – relevant information about the things
– card – value, suit
– hand – the cards in the hand (and their order)
– deck – the cards in the deck (and their order)

• methods – access/manipulation of the stored info
– card – get value, get suit
– hand – add card (at the end), add card at a position, get card at a

position, remove card at a position
– deck – shuffle, deal card h

tt
p
s:

//
fr

e
e
sv

g
.o

rg
/n

in
e
-o

f-
sp

a
d
e
s-

p
la

yi
n
g
-c

a
rd

-v
e
ct

o
r-

ill
u
st

ra
ti

o
n

h
tt

p
s:

//
co

m
m

o
n
s.

w
ik

im
e
d
ia

.o
rg

/w
ik

i/
Fi

le
:H

a
n
d
_o

f_
ca

rd
s.

jp
g

h
tt

p
s:

//
w

w
w

.p
u
b
lic

d
o
m

a
in

p
ic

tu
re

s.
n
e
t/

e
n
/v

ie
w

-i
m

a
g
e
.p

h
p
?i

m
a
g
e
=

1
1
8
7

3
&

p
ic

tu
re

=
d
e
ck

-o
f-

ca
rd

s

CPSC 225: Intermediate Programming • Spring 2025 4

Example

• things
– card game
– player

• instance variables – relevant information about the things
– card game – the game elements (player’s hands, deck, etc)
– player – their hand

• methods – access/manipulation of the stored info
– card game – the main program

→ “card game” is covered by the main program
→ “player” is sufficiently represented by just having their hands

CPSC 225: Intermediate Programming • Spring 2025 5

Program Design

Other goals of object-oriented design –

• modularity
– because small, independent chunks are easier to understand

(and reuse)

• encapsulation and information hiding
– because it is easier to understand a chunk if you don't have to

deal with all the details of how it does what it does (information
hiding)

– because isolating design decisions means you can change your
mind about them – or support multiple alternatives – without
changing the rest of the program (encapsulation)

→ group related values together and protect the actual
variables with methods to manipulate those values

CPSC 225: Intermediate Programming • Spring 2025 6

Program Design Strategy

Goal: translate the concepts and language of the problem
into classes and methods.

• identify classes – the kinds of things
– a starting point is textual analysis – look for the nouns

• but not every noun – some may be synonyms or things that don't need to
be represented in the program

• identify instance variables – consider information storage
– what values are needed to represent the class things in the

program?

• identify the methods needed to access/manipulate the
data that a class stores
– a starting point is textual analysis – look for the verbs
– consider what makes sense for the concept

CPSC 225: Intermediate Programming • Spring 2025 7

Program Design Strategy, Continued

• complete the design
– is all of the program's functionality accounted for?

• e.g. main program
• classes may also exist primarily to gather together related functionality

– is everything the program needs to keep track of accounted for?
• may be local variables in main or another class or additional instance

variables in an already-identified class

CPSC 225: Intermediate Programming • Spring 2025 10

Flip

CPSC 225: Intermediate Programming • Spring 2025 11

Flip

Design a program for the game Flip. Identify

• classes
• stored info (instance variables)
• methods

CPSC 225: Intermediate Programming • Spring 2025 12

Flip Design

class represents stored info methods

Player one player in Flip

Dice one 6-sided die

DiceColl
ection

collection of dice create with 5 dice
roll dice
get total of dice
flip a specific die

in progress

CPSC 225: Intermediate Programming • Spring 2025 13

Class Design

• distinguish between a single thing and a collection of
those things
– naming convention is a singular name for the single thing and a

plural name for the collection

– a class for the single thing may not be needed if it is simple
• type is represented by only one piece of information
• an existing type matches well

– a class for the collection may not be needed if an existing type
serves well

• e.g. an array for a collection of players that you iterate through to take
turns

• e.g. a Deck for a collection of cards since there are specialized actions
with particular names like shuffling, dealing a card

CPSC 225: Intermediate Programming • Spring 2025 14

Class Design

• a class should have a single simple well-defined purpose

– don't omit writing this purpose down!
– a long description, especially with lots of “and”, is a sign the

class is probably too complex and/or not well-defined

• if you end up not identifying any stored information or any
methods for a class, you probably don't need it

• different classes or just different objects?
– is the type or nature of the stored information different, or is the

difference really just in value?
– are there different methods or different method bodies?

CPSC 225: Intermediate Programming • Spring 2025 15

Class Design

• How do we know if the program design is complete, and
on the right track?
– do you have a specific clearly defined purpose for each class?

do the instance variables and methods for a class fit that
purpose?

• need-to-know basis

– for classes, have you accounted for all the things mentioned in
text or when thinking about the problem?

• when you have a collection of something, also consider the singular thing
contained in the collection

– for instance variables, have you accounted for everything that is
important to represent about the kinds of objects you have
classes for?

– have you accounted for the main program functionality and the
specific objects needed in the program?

– getting the classes identified is more important than every last
instance variable or method, especially getters

CPSC 225: Intermediate Programming • Spring 2025 16

Class Design

• there are better designs and worse designs, but not
always one perfect you're-wrong-with-anything-else
design
– weigh the considerations

• e.g. modularity, information hiding, encapsulation – distinct logical units
• e.g does the design reflect natural thinking about the problem?

– naming, organization
– kind of thing vs instance of thing

