

CPSC 225: Intermediate Programming • Spring 2025 32

Being Thorough

More is not automatically better – redundant test cases just
waste time.

Testing correct things is also a waste of time – focus on test
cases for what is likely to fail.

– balance the consequences of missing a bug with the effort of
unnecessary testing

• don't write test cases for simple things where you can
confidently reason about the correctness of the code
– but bugs can still creep in to simple things, and simple things may

become less simple as development continues

• do write test cases if checking if something worked or not is
easier than reasoning about the correctness of the code
– but testing is not a perfect substitute for reasoning about correctness

• do test special cases and trouble spots where bugs often arise
– black box tests covering cases which often require unique code paths

CPSC 225: Intermediate Programming • Spring 2025 33

Being Thorough

• include the typical case(s) – e.g.
– middle element in a non-empty collection

• typical special cases – e.g.
– empty collections or collections with only one element
– end conditions – involving first or last element
– off-the-end conditions – before the beginning or after the end
– handling duplicate values

• typical bugs and trouble spots – e.g.
– off-by-one in counting loops – 1 repetition, max repetitions
– where null values can arise

public static boolean contains (int[] array,
 int elt) { … }

CPSC 225: Intermediate Programming • Spring 2025 38

Designing for Testing

Implementing test cases for class methods may require
access to private instance variables to set up starting state
or check the expected result.

• add what is needed, but try to grant as little extra access
as possible
– for testing code in the same package, use the default (no

keyword) access modifier rather than public
– add a getter method or constructor rather than making instance

variables less private
– consider returning a “safe” representation rather than granting

direct access
• e.g. toString() to return a string version of the contents instead of

returning the array of elements

– consider implementing the check (at least partially) within the
class rather than in the tester

CPSC 225: Intermediate Programming • Spring 2025 39

Reasoning About Correctness

• test cases only test specific inputs
– how can we be sure we’ve covered all the cases?

CPSC 225: Intermediate Programming • Spring 2025 40

Preconditions

• address correct usage

• constraints on the values the method (block) works with
– method's parameters
– instance variables in that class which are used by the method

body
– local variables used by the block
– global variables used by the method body / block

• only include conditions which could be violated at runtime
– e.g. for an integer parameter, a precondition could be that the

value must be > 0
– that the value of a parameter or variable must match the

declared type is not a precondition – type mismatches won't
compile

• where do they go?
– about public concepts? → include in the method comments
– about private concepts? → note in internal comments CPSC 225: Intermediate Programming • Spring 2025 41

Internal Preconditions

// suit is one of “spades”, “diamonds”, “hearts”,
// “clubs”

if (suit.equals(“spades”)) {
 …
} else if (suit.equals(“diamonds”)) {
 …
} else if (suit.equals(“hearts”)) {
 …
} else {
 …
}

CPSC 225: Intermediate Programming • Spring 2025 42

Internal Preconditions

// i % 3 must be 0, 1, or 2 i.e. i >= 0

if (i % 3 == 0) {
 …
} else if (i % 3 == 1) {
 …
} else {
 …
}

(why is this invariant
useful to state?)

CPSC 225: Intermediate Programming • Spring 2025 43

Postconditions

• address correct result
• constraints on the values resulting from the successful

completion of the method's (block’s) task
– method's return value
– instance variables in that class which are used by the method

body
– local variables used by the block
– global variables used by the method body / blocks

• practical matters
– focus only on that the method / block does what it should, not

that it also doesn't do what it shouldn't
– for runtime checks, easily verifiable postconditions are needed

so may need to identify and check certain properties of a correct
result rather than the result itself

• where do they go?
– about public concepts? → include in the method comments
– about private concepts? → note in internal comments

CPSC 225: Intermediate Programming • Spring 2025 44

Postcondition

// pre: array contains only values >= 0
int max = -1;
for (int i = 0 ; i < array.length ; i++) {
 if (array[i] > max) { max = array[i]; }
}
// post: max >= array[i] for 0 <= i < array.length

CPSC 225: Intermediate Programming • Spring 2025 45

Invariants

• address correct behavior
• constraints on intermediate values within a method or

class
– e.g. loop invariant – property that is true before the loop and

after each iteration (loop correctness)
– e.g. class invariants – limits on state contained in the object, true

before and after each class method (object consistency)
– e.g. data structure constraints (structural consistency)

• primarily useful for formal correctness arguments, but can
also be employed for runtime sanity checks

• choose invariants that are useful
– they clarify expectations or explain operation e.g.

pre/postconditions, constraints imposed by the problem domain
– they reward with information e.g. a bug in complex code could

cause invariant to be false

• where to write?
– internal comments

CPSC 225: Intermediate Programming • Spring 2025 46

Class Invariant

public class BankAccount {

 private double balance_; // balance >= 0

 public BankAccount () {
 balance_ = 0;
 }

 public void withdraw (double amount) {
 balance_ -= amount;
 }

 public void deposit (double amount) {
 balance_ += amount;
 }
}

CPSC 225: Intermediate Programming • Spring 2025 47

Class Invariant / Data Structure Constraint

public class SortedArray {

 private int[] array_; // in increasing order
 private int size_;

 public SortedArray (int capacity) {
 array_ = new int[capacity];
 size_ = 0;
 }

 public void insert (int elt) {
 for (int i = size_ ; i >= 0 ; i--) {
 if (array_[i-1] > elt) {
 array_[i] = array_[i-1];
 } else {
 array_[i] = elt;
 break;
 }
 }
 }

 public int getMin () { return array_[0]; }
}

CPSC 225: Intermediate Programming • Spring 2025 48

Loop Invariant

// pre: array contains only values >= 0
int max = -1;
for (int i = 0 ; i < array.length ; i++) {
 // before iteration: max is the largest value in
 // array[0..i], not including array[i]
 if (array[i] > max) { max = array[i]; }
}
// post: max >= array[i] for 0 <= i < array.length

this invariant allows us to use proof by induction
to establish that the loop computes the sum of
the elements in the array

CPSC 225: Intermediate Programming • Spring 2025 49

Invariants and Correctness

Why consider invariants?

• supports reasoning about correctness
– showing that the invariant is maintained shows that the code isn’t

broken

• supports producing correct code
– identifying preconditions is essential for correct usage of the

module
– reveals assumptions and expectations

Checking preconditions, postconditions, and other
invariants at runtime aids in the detection of bugs during
testing.

– (but not all postconditions and invariants can be easily checked)

CPSC 225: Intermediate Programming • Spring 2025 50

Loop Invariant

// pre: array contains only values >= 0
int max = -1;
for (int i = 0 ; i < array.length ; i++) {
 // before iteration: max is the largest value in
 // array[0..i], not including array[i]
 if (array[i] > max) { max = array[i]; }
}
// post: max >= array[i] for 0 <= i < array.length

the pre- and postconditions can be checked, but
not the loop invariant

CPSC 225: Intermediate Programming • Spring 2025 52

Handling Violations

• a violated precondition, postcondition, or invariant means
a bug in the code, and cannot be handled at runtime
– program should terminate

Note –

• for public preconditions, violation is the fault of the caller,
not the module
– robustness dictates always checking

• for everything else, violation is the fault of the local code
– only need to check if code is buggy

CPSC 225: Intermediate Programming • Spring 2025 53

Public Preconditions

For public preconditions, the Java convention is to throw an
IllegalArgumentException if the precondition is violated.

– detail message should provide info to help with debugging

• typically checked first thing in the method

• exception is not caught
– RuntimeException, so catch is not required
– violated precondition is a bug, so solution is to correct the code –

uncaught exception causes program termination

if (precondition is violated) {
 throw new IllegalArgumentException(“detail message”);
}

CPSC 225: Intermediate Programming • Spring 2025 54

Public Preconditions

public class BankAccount {
 …

 /**
 * @param amount amount to withdraw (must be >= 0 and
 * cannot exceed balance)
 */
 public void withdraw (double amount) {
 if (amount < 0 || amount > balance_) {
 throw new IllegalArgumentException(“expect 0 <= “+
 “amount <= balance; got “+amount);
 }
 balance_ -= amount;
 assert balance >= 0;
 }

 …
}

CPSC 225: Intermediate Programming • Spring 2025 55

Assertions

Assertions let you state a boolean condition that should be
true at that point in the program.

– if it is, program execution continues normally
– if it isn't, the program terminates

Syntax:

 assert condition;
 assert condition : error-message;

– if the condition is true, nothing happens (program continues)
– if the condition is false, an exception is generated (with the

optional error message)

CPSC 225: Intermediate Programming • Spring 2025 56

Using Assertions

// suit is one of “spades”, “diamonds”, “hearts”,
// “clubs”

if (suit.equals(“spades”)) {
 …
} else if (suit.equals(“diamonds”)) {
 …
} else if (suit.equals(“hearts”)) {
 …
} else {
 assert suit.equals(“clubs”);
 …
}

CPSC 225: Intermediate Programming • Spring 2025 57

Using Assertions

// i % 3 must be 0, 1, or 2 i.e. i >= 0

if (i % 3 == 0) {
 …
} else if (i % 3 == 1) {
 …
} else {
 assert i % 3 == 2;
 …
}

• an alternative is assert i >= 0 before the statement

CPSC 225: Intermediate Programming • Spring 2025 58

Class Invariant

public class BankAccount {

 private double balance_; // balance >= 0

 public BankAccount () {
 balance_ = 0;
 assert balance >= 0;
 }

 public void withdraw (double amount) {
 balance_ -= amount;
 assert balance >= 0;
 }

 public void deposit (double amount) {
 balance_ += amount;
 assert balance >= 0;
 }
}

identifying class
invariant reveals
need for
precondition

include only useful checks – class invariant should
be true at beginning and end of each method, but
with private instance variables, their values can't
be changed between method calls

CPSC 225: Intermediate Programming • Spring 2025 59

Class Invariant / Data Structure Constraint

public class SortedArray {

 private int[] array_; // in increasing order
 private int size_;

 public SortedArray (int capacity) {
 array_ = new int[capacity];
 size_ = 0;
 assert isSorted();
 }

 public void insert (int elt) {
 for (int i = size_ ; i >= 0 ; i--) {
 if (array_[i-1] > elt) {
 array_[i] = array_[i-1];
 } else {
 array_[i] = elt;
 break;
 }
 }
 assert isSorted();
 }

 private boolean isSorted () { … }
} CPSC 225: Intermediate Programming • Spring 2025 60

Assertions

An advantage of assertions is that they can be turned on
and off.

– can be left in production code without incurring a performance hit
• checking assertion condition may be expensive

– can be turned on for testing and debugging

Note: assertions are disabled by default.

Enable for the whole program with the runtime argument
-ea

– in Eclipse, this is under Run Configurations “VM Arguments”
– can also selectively enable assertions for particular classes –

see section 8.4.1 in the text

