Being Thorough

More is not automatically better — redundant test cases just
waste time.

Testing correct things is also a waste of time — focus on test
cases for what is likely to fail.
balance the consequences of missing a bug with the effort of
unnecessary testing
don't write test cases for simple things where you can
confidently reason about the correctness of the code
but bugs can still creep in to simple things, and simple things may
become less simple as development continues
do write test cases if checking if something worked or not is
easier than reasoning about the correctness of the code
but testing is not a perfect substitute for reasoning about correctness

do test special cases and trouble spots where bugs often arise
black box tests covering cases which often require unique code paths =

2

Designing for Testing

Implementing test cases for class methods may require
access to private instance variables to set up starting state
or check the expected result.

add what is needed, but try to grant as little extra access
as possible
for testing code in the same package, use the default (no
keyword) access modifier rather than public
add a getter method or constructor rather than making instance
variables less private
consider returning a “safe” representation rather than granting
direct access
e.g. toString() to return a string version of the contents instead of
returning the array of elements
consider implementing the check (at least partially) within the
class rather than in the tester

Being Thorough

public static boolean contains (int[] array,
int elt) { .. }

include the typical case(s) — e.qg.
middle element in a non-empty collection

typical special cases — e.g.
empty collections or collections with only one element
end conditions — involving first or last element
off-the-end conditions — before the beginning or after the end
handling duplicate values

typical bugs and trouble spots — e.g.
off-by-one in counting loops — 1 repetition, max repetitions
where null values can arise

CPSC 225: Intermediate Programming = Spring 2025 33

Reasoning About Correctness

CPSC 225: Intermediate Programming + Spring 2025 38

test cases only test specific inputs
how can we be sure we've covered all the cases?

CPSC 225: Intermediate Programming + Spring 2025 39

Preconditions

address correct usage

constraints on the values the method (block) works with
method's parameters

instance variables in that class which are used by the method
body

local variables used by the block
global variables used by the method body / block

only include conditions which could be violated at runtime

e.g. for an integer parameter, a precondition could be that the
value must be >0

that the value of a parameter or variable must match the
declared type is not a precondition — type mismatches won't
compile

where do they go?
about public concepts? - include in the method comments
about private concepts? - note in internal comments o

Internal Preconditions

}
}

// 1% 3 must be 0, 1, or 2 i.e. i >=0

if (1%3==0) {

)

else if (i%3==1) {

else {

(why is this invariant
useful to state?)

CPSC 225: Intermediate Programming + Spring 2025 2

Internal Preconditions

// suit is one of “spades”, “diamonds”, “hearts”,
// “clubs”

if (suit.equals(“spades”)) {

} glse if (suit.equals(“diamonds”)) {
} glse if (suit.equals(“hearts”)) {

} glse {

}

CPSC 225: Intermediate Programming = Spring 2025 a1

Postconditions

address correct result
constraints on the values resulting from the successful
completion of the method's (block’s) task

method's return value

instance variables in that class which are used by the method
body

local variables used by the block

practical matters

focus only on that the method / block does what it should, not
that it also doesn't do what it shouldn't

for runtime checks, easily verifiable postconditions are needed
so may need to identify and check certain properties of a correct
result rather than the result itself

where do they go?

about public concepts? - include in the method comments
about private concepts? - note in internal comments

Postcondition Invariants

address correct behavior

constraints on intermediate values within a method or
// pre: array contains only values >= 0 class . .)

int max = -1 e.g. loop invariant — property that is true before the loop and
for (int i L 0 : i < array.length ; i++) { after each iteration (loop correctness)

: : - 7. e.g. class invariants — limits on state contained in the object, true
} 7 APl = s U S IR = BrTEILE & before and after each class method (object consistency)

// post: max >= array[i] for @ <= i < array.length e.g. data structure constraints (structural consistency)
primarily useful for formal correctness arguments, but can
also be employed for runtime sanity checks

choose invariants that are useful

they clarify expectations or explain operation e.g.
pre/postconditions, constraints imposed by the problem domain

they reward with information e.g. a bug in complex code could
cause invariant to be false

where to write?
CPSC 225: Intermediate Programming + Spring 2025 “ internal comments s

Class Invariant Class Invariant / Data Structure Constraint

public class SortedArray {

public class BankAccount { private int[] array_; // in increasing order
private int size ;

private double balance_; // balance >= 0 public SortedArray (int capacity) {
array = new int[capacity];
public BankAccount () { size. = 0;
balance = 0; }
} public void insert (int elt) {
)) . for (int i = size ; i >=0 ; i--) {
public void withdraw (double amount) { if (array [i-1] > elt) {
balance -= amount; array_[i] = array [i-1];
} } else {
array [i] = elt;
public void deposit (double amount) { break;
balance += amount;) }
- :

CPSC 225: Intermediate Programming + Spring 2025 6

public int getMin () { return array [0]; }

Loop Invariant

// pre: array contains only values >= 0

int max = -1;

for (int 1 = 0 ; i < array.length ; i++) {
// before iteration: max is the largest value in
// array[0..i], not including array[i]
if (array[i] > max) { max = array[i]; }

}

// post: max >= array[i] for 0 <= i < array.length

this invariant allows us to use proof by induction
to establish that the loop computes the sum of
the elements in the array

CPSC 225 Intermediate Programming = Spring 2025

Loop Invariant

// pre: array contains only values >= 0

int max = -1;

for (int i =0 ; i < array.length ; i++) {
// before iteration: max is the largest value in
// array[0..1i], not including array[i]
if (array[i] > max) { max = array[i]; }

}

// post: max >= array[i] for O <= i < array.length

the pre- and postconditions can be checked, but
not the loop invariant

48

CPSC 225: Intermediate Programming + Spring 2025

Invariants and Correctness

Why consider invariants?

supports reasoning about correctness

showing that the invariant is maintained shows that the code isn’t
broken

supports producing correct code

identifying preconditions is essential for correct usage of the
module

reveals assumptions and expectations

Checking preconditions, postconditions, and other

invariants at runtime aids in the detection of bugs during
testing.

(but not all postconditions and invariants can be easily checked)

CPSC 225: Intermediate Programming = Spring 2025 49

Handling Violations

a violated precondition, postcondition, or invariant means
a bug in the code, and cannot be handled at runtime
program should terminate

Note —

for public preconditions, violation is the fault of the caller,
not the module

robustness dictates always checking

for everything else, violation is the fault of the local code
only need to check if code is buggy

CPSC 225: Intermediate Programming + Spring 2025

Public Preconditions

For public preconditions, the Java convention is to throw an
ITlegalArgumentException if the precondition is violated.

if (precondition is violated) {
throw new IllegalArgumentException(“detail message”);

}
detail message should provide info to help with debugging

typically checked first thing in the method

exception is not caught
RuntimeException, so catch is not required

violated precondition is a bug, so solution is to correct the code —
uncaught exception causes program termination

CPSC 225 Intermediate Programming = Spring 2025 53

Assertions

Assertions let you state a boolean condition that should be
true at that point in the program.

if it is, program execution continues normally
if it isn't, the program terminates

Syntax:

assert condition;
assert condition : error-message;

if the condition is true, nothing happens (program continues)

if the condition is false, an exception is generated (with the
optional error message)

CPSC 225: Intermediate Programming + Spring 2025 55

Public Preconditions

public class BankAccount {

J**

* @param amount amount to withdraw (must be >= 0 and
* cannot exceed balance)

=/
public void withdraw (double amount) {
if (amount < 0 || amount > balance_) {

throw new IllegalArgumentException(“expect 0 <= “+
“amount <= balance; got “+amount);

}

balance -= amount;

assert balance >= 0;
}

)

CPSC 225: Intermediate Programming = Spring 2025

Using Assertions

// suit is one of “spades”, “diamonds”, “hearts”,
// ‘“clubs”

if (suit.equals(“spades”)) {
} else if (suit.equals(“diamonds”)) {
} else if (suit.equals(“hearts”)) {

} else {
assert suit.equals(“clubs”);

CPSC 225: Intermediate Programming + Spring 2025

Using Assertions

// 1 % 3 must be 0, 1, or 2 i.e. i >=0
if (1%3==0) {
} else if (1 % 3 ==) {

} else {
assert i % 3 == 2;

an alternative is assert i >= 0 before the statement

CPSC 225 Intermediate Programming = Spring 2025 57

Class Invariant / Data Structure Constraint

public class SortedArray {

private int[] array_; // in increasing order
private int size ;

public SortedArray (int capacity) {
array_ = new int[capacity];
size = 0;
assert isSorted();

}

public void insert (int elt) {
for (int i = size ; i >=0 ; i--) {
if (array [i-1] > elt) {
array [i] = array [i-1];

} else {
array [i] = elt;
break;
}
}
assert isSorted();
}
private boolean isSorted () { .. } -
} 59

include only useful checks - class invariant should

H be true at beginning and end of each method, but
Class Invariant u e "

with private instance variables, their values can't

be changed between method calls

public class BankAccount {

private double balance ; // balance >= 0

public BankAccount () {
balance = 0;
assert balance >= 0;

}

public void withdraw (double amount) { Identifying class
balance_ -= amount; ggﬁﬁﬁ; reveats

) assert balance >= 0; precondition

public void deposit (double amount) {
balance += amount;
assert balance >= 0;
}
}

@
&8

Assertions

An advantage of assertions is that they can be turned on
and off.

can be left in production code without incurring a performance hit
checking assertion condition may be expensive
can be turned on for testing and debugging

Note: assertions are disabled by default.

Enable for the whole program with the runtime argument
-ea
in Eclipse, this is under Run Configurations “VM Arguments”

can also selectively enable assertions for particular classes —
see section 8.4.1 in the text

CPSC 225: Intermediate Programming + Spring 2025 60

