Lab 2

Two (three) goals —

* identifying a set of test cases to thoroughly test code

what are the different behaviors? what aspects of the input lead
to different results?

anticipate typical bugs

cover special cases —a common bug is not handling one or
more correctly

* seeing a framework for implementing a tester

if it is easy to run tests, it is easy to do it each time the code is
modified (fixing bugs, adding features) to verify that nothing
broke

* seeing an example of how you might organize a program
to facilitate testing

for Rock Paper Scissors, pull key pieces of the functionality —
handling one round and handling the whole game — into methods

CPSC 225 Intermediate Programming = Spring 2025 27

Lab 2

public class TimeTester {

public static void main (String[] args) {
// demo of running a test case
runTestCase("demo","@815Z", "EDT","4:15 AM (EDT)");

public static void runTestCase (String name, String zulu, String timezone,
String result) {
System.out.println(" -- " + name);

Time time = new TimeVariantl(zulu);
String converted = time.convert(timezone);

System.out.print(" got: " + converted + " / expected: " + result + " ... ");

if (result.equals(converted)) {
System.out.println("passed!");

public class SortTester { !t should I_Je as easy as possible to tell what
isn't working

public static void main (String[] args) { . .
// demo of running a test case when the thing being tested produces
runTestCase("demo",10,20,30,"10 20 30"); output, the best we can do is print the

output generated and the expected output

. so it is easy to compare and see if they
* Run a test case for sort3.

match
testcase . e
name of test case also print the name of the test case so it is
a easy to tell what failed
input to sort3 (a)
o since this is done for every test case, define

input to sort3 (b) . .
c a method which takes the necessary info
iwitdto sort3 (c) about the test case (name, input, expected
expecte
cxpected result (string gfinted) F€SUlt), runs it, and prints info for inspection

2y
public static void runTestCase (String testcase, int a, int b, int c,
String expected) {
System.out.println(" -- " + testcase);

System.out.print(" got: ");
Sort3variantl.sort3(a,b,c);
System.out.println(" expected: " + expected);
System.out.println(};

CPSC 225: Intermediate Programming = Spring 2025 28

Lab 2

« for Rock Paper Scissors, choose the run test case
templates that match the methods being tested
do getRoundWinner and getGameWinner print or return?

public class RPSTester {

public static void main (String[] args) {}

* test cases should focus on each method’s own job

} else {) ‘ \ when the method being tested returns a
N System.out.println("failed!"); value, that value can be checked against the
} correct answer — printing “passed” or “failed”
} makes it even easier to tell which tests
worked and which didn’t

CPSC 225: Intermediate Programming + Spring 2025 29

Based on the API description above, identify test cases for both
getRoundWinner and getGamewWinner. One wrinkle is that these
methods aren't independent — getGameWinner USES getRoundWinner
for each round within the game. Identify test cases for
getGameWinner assuming that getRoundwinner works — that is, focus
just on what could go wrong with getGameWinner itself.

Lab 2

Other variants —

* your goal is to create a thorough tester than can find any
bug, not just the one(s) in variant 1

* trying implementations with different (or no) bugs helps
you test your tester

The 1ab2-variants. jar file contains three additional implementations of sort3 with different bugs (or perhaps no bugs at
all). To try your tester with these variants, locate the line with sert3variant1.sort3 in runTestcase and change it to
Sort3Variant2, Sort3variant3, Of Sort3variant4. You do not need to report on bugs found or not found in these variants, but
there's at most one correct implementation provided so if all of your tests pass for several variants, you're missing some
test cases...

public static void runTestCase (String testcase, int a, int b, int c,
String expected) {

System.out.println(" -- " + testcase);
System.out.print(" got: ");
Sort3Variantl.sort3(a,b,c); -

System.out.println(" expected: " + expected);
System.out.println();

¥ _——

CPSC 225 Intermediate Programming = Spring 2025 31

