

CPSC 225: Intermediate Programming • Spring 2025 106

Correctness and Robustness

With correctness, problems are the fault of the program's (or
module’s) code.
• only need to check for the correct situation
• program code only needs to detect a problem

– handling the problem (i.e. fixing the bug) is the programmer's job

With robustness, problems are the fault of something
outside the program (or module).
• check for incorrect situations
• program code also needs to handle the problem

– attempt to recover if possible – e.g. prompt for new input
– if recovery is not possible, avoid doing damage and display an

informative message so the user can understand and attempt to
fix the problem

– crashing is not reasonable

CPSC 225: Intermediate Programming • Spring 2025 107

Implementing Robustness

Considerations –
• can the error be handled in the same place it is detected?

 int number;
 for (; true ;) {
 System.out.println(“Enter a positive “+
 ”number: “);
 number = scanner.nextInt();
 if (number > 0) { break; }
 else {
 System.out.println(“not positive!”);
 }
 }
 System.out.println(“the square root is “+
 Math.sqrt(number));

– this code reads the original value from
the user, so it knows that reading a new
value from the user is appropriate if the
user doesn’t enter a positive number

 /**
 * …
 * @param x … (x > 0)
 */

 public void func (int x) {
 if (x <= 0) { … }
 …
 }

– func has no idea where
the parameter value came
from, so it cannot take
appropriate actions to
remedy the bad value – it
can only signal that an
error occurred so the
caller can do something

CPSC 225: Intermediate Programming • Spring 2025 108

Signaling Errors

Two options –

• return a special value
– error handling is part of the normal flow of control
– not always possible
– caller can ignore

• throw an exception
– typically only used when the error truly is an error, not a normally

expected outcome
– can separate error handling from the normal flow of control
– allows for streamlined error handling

• simplify code by grouping error handing for a related block of code in one
place

• simplify code when execution of a block of code should not continue if
there's a problem with one step

– some exception types must be handled

int index = str.indexOf(',');
if (index == -1) { … } // handle error
String before = str.substring(0,index);

CPSC 225: Intermediate Programming • Spring 2025 109

Throwing Exceptions

 if (condition) {
 throw exception-object;
 }

The thing being thrown is an object.
– typically you create a new object rather than throwing one that

already exists
– contains info about what went wrong and where

• object type provides information about the problem which can be used in
the program to determine how to handle the problem

• detail message provides more information for the programmer/user
• stack trace identifies where the exception was thrown

 e.getMessage();
 e.printStackTrace();

CPSC 225: Intermediate Programming • Spring 2025 110

Example

/**
 * pre: low <= high
 */
public void func (int low, int high) {
 if (low > high) {
 throw new IllegalArgumentException(“require “+
 ” low <= high; got “+low+” > “+high);
 }
 …
}

for preconditions, the convention in Java is to
use IllegalArgumentException

CPSC 225: Intermediate Programming • Spring 2025 111

public static Card read () throws ParseException {
 int value = TextIO.getInt();
 if (value < 1 || value > 13) {
 throw new ParseException(“value must be between 1 “+
 “ and 13; got “+value);
 }
 char ch = TextIO.getAnyChar();
 if (ch != ' ') {
 throw new ParseException(“expected space; got “+ch);
 }
 String word = TextIO.getWord();
 if (!word.equals(“of”)) {
 throw new ParseException(“expected 'of'; got “+
 value);
 }
 char ch2 = TextIO.getAnyChar();
 if (ch2 != ' ') {
 throw new ParseException(“expected space; got “+ch2);
 }
 String suit = TextIO.getWord();
 if (!suit.equals(“hearts”) && !suit.equals(“diamonds”) &&
 !suit.equals(“spades”) && !suit.equals(“clubs”)) {
 throw new ParseException(“invalid suit “+suit);
 }
 return new Card(suit,value);
}

CPSC 225: Intermediate Programming • Spring 2025 112

Types of Exceptions

A class hierarchy groups types of exceptions by function.

• Throwable is the top-level class
– two main subclasses: Error and Exception

• Error is used for serious, fatal errors – something that
there is no reasonable way to handle
– e.g. problems with the Java VM
– should not be caught – nothing the program can do

• Exception is used for errors that can be handled
– generally the only things you'll throw (and catch) are subclasses

of Exception
– must be caught (unless subclass of RuntimeException)

CPSC 225: Intermediate Programming • Spring 2025 113

Types of Exceptions

• RuntimeException is a subclass of Exception
– used to signal failed runtime checks

• e.g. ArrayIndexOutOfBoundsException,
NullPointerException, IllegalArgumentException

– generally the only one you'd throw is
IllegalArgumentException

– generally should not be caught – fix the bug instead

CPSC 225: Intermediate Programming • Spring 2025 114 CPSC 225: Intermediate Programming • Spring 2025 115

Types of Exceptions

Choose an appropriate exception type for your error.
• Java provides a number of exception types (though most

are for very specific purposes)
• can also define your own

– subclass Exception, RuntimeException, or an existing
exception type

CPSC 225: Intermediate Programming • Spring 2025 116

Catching Exceptions

A section of code that may throw an exception goes inside a
try block.

One or more catch blocks (one for each type of exception)
contain code to be executed if that type of exception is
thrown.

CPSC 225: Intermediate Programming • Spring 2025 117

Catching Exceptions

When an exception is thrown, control immediately transfers
to the nearest enclosing catch block.

– matching means the thrown object's type is the same or a
subclass of the catch block's declared exception type

– if there is no matching catch within the current method, a
matching catch is sought in the caller (and so forth)

Then –
• the body of the catch block is executed
• the finally block is executed (if any)
• control continues immediately following that try-catch

CPSC 225: Intermediate Programming • Spring 2025 118

Example

int sum = 0;
for (; true ;) {

 String input;
 System.out.print("please type something: ");
 input = scanner.nextLine();
 int number = Integer.parseInt(input);

 if (number == 0) { break; }
 sum = sum+number;

}

System.out.println("the sum is: "+sum);

CPSC 225: Intermediate Programming • Spring 2025 119

Example

int sum = 0;
for (; true ;) {

 String input;
 System.out.print("please type something: ");
 input = scanner.nextLine();

 try {
 int number = Integer.parseInt(input);
 if (number == 0) { break; }
 sum = sum+number;

 } catch (NumberFormatException e) {
 System.out.println("that wasn't a number!");
 }
}

System.out.println("the sum is: "+sum);

CPSC 225: Intermediate Programming • Spring 2025 120

Example

int sum = 0;

try {
 for (; true ;) {

 String input;
 System.out.print("please type something: ");
 input = scanner.nextLine();
 int number = Integer.parseInt(input);
 if (number == 0) { break; }
 sum = sum+number;
 }

 System.out.println("the sum is: "+sum);

} catch (NumberFormatException e) {
 System.out.println("that wasn't a number!");
}

CPSC 225: Intermediate Programming • Spring 2025 121

Example

int sum = 0;

try {

 for (; true ;) {

 String input;
 System.out.print("please type something: ");
 input = scanner.nextLine();
 int number = Integer.parseInt(input);
 if (number == 0) { break; }
 sum = sum+number;
 }

} catch (NumberFormatException e) {
 System.out.println("that wasn't a number!");

} finally {
 System.out.println("the sum is: "+sum);
}

CPSC 225: Intermediate Programming • Spring 2025 122

Example

int sum = 0;

try {
 for (; true ;) {

 String input;
 System.out.print("please type something: ");
 input = scanner.nextLine();
 int number = Integer.parseInt(input);
 if (number == 0) { break; }
 sum = sum+number;
 }
} catch (NumberFormatException e) {
 System.out.println("that wasn't a number!");
}

System.out.println("the sum is: "+sum);

CPSC 225: Intermediate Programming • Spring 2025 123

int[] numbers = new int[10];
for (int index = 0 ; index < numbers.length ;
 index++) { numbers[index] = index; }

for (; true ;) {

 String input;
 System.out.print("please type something: ");
 input = scanner.nextLine();

 try {
 int number = Integer.parseInt(input);
 if (number == 0) { break; }
 System.out.println(numbers[number]);

 } catch (NumberFormatException e) {
 System.out.println("that wasn't a number!");
 } catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("not a legal index!");
 }
}

CPSC 225: Intermediate Programming • Spring 2025 124

Example
int[] numbers = new int[10];
for (int index = 0 ; index < numbers.length ;
 index++) { numbers[index] = index; }

try {
 for (; true ;) {

 String input;
 System.out.print("please type something: ");
 input = scanner.nextLine();

 try {
 int number = Integer.parseInt(input);
 if (number == 0) { break; }
 System.out.println(numbers[number]);

 } catch (NumberFormatException e) {
 System.out.println("not a number!");
 }
 }
} catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("not a legal index!");
}

CPSC 225: Intermediate Programming • Spring 2025 125

the catch block is for error
handling – the finally block
is executed regardless of
whether or not an exception
occurred in the try block

CPSC 225: Intermediate Programming • Spring 2025 126

the catch block is for error
handling – the finally block
is executed regardless of
whether or not an exception
occurred in the try block

technically correct but not
the intent of finally

CPSC 225: Intermediate Programming • Spring 2025 127

Caller's Responsibility

When the problem cannot be handled in the place it was
detected, the caller has two options for handling –

• look before you leap
– check for problematic conditions and only call the method if it

can succeed

• leap before you look
– call the method and deal with the error when it is signaled

Generally look first if you can. Prefer leaping if –
• determining if the error condition exists is difficult
• errors are signaled with exceptions (but not
RuntimeExceptions)

int index = str.indexOf(',');
if (index == -1) { … } // handle error
String before = str.substring(0,index);

leap before you look
because determining if str
has a comma requires
looking for a comma in str…

CPSC 225: Intermediate Programming • Spring 2025 128

Not Catching Exceptions

You may choose not to catch/handle an exception in a
method.

– e.g. the method can't solve the problem, but its caller might be
able to

A method that throws an exception (other than a
RuntimeException) without catching it must indicate that.

– @exception tag in javadoc comments identifying exception type
and when it occurs

– throws declaration in method header

CPSC 225: Intermediate Programming • Spring 2025 129

Example

/**
 * …
 * @exception FileNotFoundException
 * if specified file does not exist
 * @exception IOException
 * if an I/O error occurs while reading the file
 */
public void load (String filename)
 throws FileNotFoundException, IOException {

 BufferedReader reader =
 new BufferedReader(new FileReader(filename));

 for (; true ;) {
 String line = reader.readLine();
 if (line == null) { break; }
 …
 }
}

CPSC 225: Intermediate Programming • Spring 2025 130

Appropriate Use of Exceptions

Exceptions are handy, but they aren't for everything.

– not appropriate for when the error can (and should) be handled
right away

 System.out.println(“enter a number 1-10: “);
 int number = scanner.nextInt();
 for (; number < 1 || number > 10 ; 0 {
 System.out.println(“number must be between “+
 “1 and 10”);
 number = scanner.nextInt();
 }

CPSC 225: Intermediate Programming • Spring 2025 131

Example
int[] numbers = new int[10];
for (int index = 0 ; index < numbers.length ;
 index++) { numbers[index] = index; }

for (; true ;) {

 String input;
 System.out.print("please type something: ");
 input = scanner.nextLine();

 try {
 int number = Integer.parseInt(input);
 if (number == 0) { break; }
 System.out.println(numbers[number]);

 } catch (NumberFormatException e) {
 System.out.println("that wasn't a number!");
 } catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("not a legal index!");
 }
}

catching a RuntimeException isn't generally the best style
– what should you do instead?

CPSC 225: Intermediate Programming • Spring 2025 132

when the user has entered
something, the correct
handling of bad input is
known – have the user
enter a new something

CPSC 225: Intermediate Programming • Spring 2025 133

this is not an error – the
method’s job is done! the
array is sorted!

“not found” is a normal,
expected outcome for find –
exceptions are meant for
problems

