Correctness and Robustness

With correctness, problems are the fault of the program's (or
module’s) code.
only need to check for the correct situation
program code only needs to detect a problem
handling the problem (i.e. fixing the bug) is the programmer's job

With robustness, problems are the fault of something
outside the program (or module).
check for incorrect situations
program code also needs to handle the problem
attempt to recover if possible — e.g. prompt for new input

if recovery is not possible, avoid doing damage and display an
informative message so the user can understand and attempt to
fix the problem

crashing is not reasonable

CPSC 225: Intermediate Programming + Spring 2025 106
Signaling Errors

i — int index = str.indexOf(',');
Two OpthﬂS if (index == -1) { ..} // handle error

String before = str.substring(0,index);

return a special value
error handling is part of the normal flow of control
not always possible
caller can ignore

throw an exception
typically only used when the error truly is an error, not a normally
expected outcome
can separate error handling from the normal flow of control
allows for streamlined error handling

simplify code by grouping error handing for a related block of code in one
place

simplify code when execution of a block of code should not continue if
there's a problem with one step

some exception types must be handled

CPSC 225: Intermediate Programming + Spring 2025 108

Implementing Robustness

Considerations —
can the error be handled in the same place it is detected?

int number; [
for (; true ;) { * .

System.out.println(“Enter a positive “+ * @param X .. (x > 0)
"number: “); =y

number = scanner.nextInt();

if (number > @) { break; } public void func (int x) {

else { if (x<=0) { ..}
System.out.println(“not positive!”);

}
éystem.out.println(“the square root is “+ Il’l:gcpzl;]fasmn;:é?’evaalvl\jzecr;me
Math.sqrt(number)); .
from, so it cannot take
this code reads the original value from appropriate actions to
the user, so it knows that reading a new remedy the bad value - it
value from the user is appropriate if the can only signal that an
user doesn’t enter a positive number error occurred so the
caller can do something
—
CPSC 225: Intermediate Programming » Spring 2025 107

Throwing Exceptions

if (condition) {
throw exception-object;

}

The thing being thrown is an object.
typically you create a new object rather than throwing one that
already exists
contains info about what went wrong and where

object type provides information about the problem which can be used in
the program to determine how to handle the problem

detail message provides more information for the programmer/user
stack trace identifies where the exception was thrown
e.getMessage();
e.printStackTrace();

CPSC 225: Intermediate Programming + Spring 2025 109

Example

/**

* pre: low <= high
*/

public void func (int low, int high) {
if (low > high) {
throw new IllegalArgumentException(“require “+
" low <= high; got “+low+” > “+high);

for preconditions, the convention in Java is to
use IllegalArgumentException

CPSC 225 Intermediate Programming = Spring 2025 110

Types of Exceptions

A class hierarchy groups types of exceptions by function.

Throwable is the top-level class
two main subclasses: Error and Exception

Error is used for serious, fatal errors — something that
there is no reasonable way to handle

e.g. problems with the Java VM

should not be caught — nothing the program can do

Exception is used for errors that can be handled

generally the only things you'll throw (and catch) are subclasses
of Exception

must be caught (unless subclass of RuntimeException)

CPSC 225: Intermediate Programming + Spring 2025 112

public static Card read () throws ParseException {

}

int value = TextIO.getInt();
if (value < 1 || value > 13) {
throw new ParseException(“value must be between 1 “+
“ and 13; got “+value);

}
char ch = TextIO.getAnyChar();
if (ch =" ") {

throw new ParseException(“expected space; got “+ch);

}
String word = TextIO.getWord();
if (!'word.equals(“of”)) {
throw new ParseException(“expected 'of'; got
value);

u

+

}
char ch2 = TextIO.getAnyChar();
if (ch2 '= "' ')

throw new ParseException(“expected space; got “+ch2);

}
String suit = TextIO.getWord();
if ('suit.equals(“hearts”) && !suit.equals(“diamonds”) &&
Isuit.equals(“spades”) && !suit.equals(“clubs”)) {
throw new ParseException(“invalid suit “+suit);

return new Card(suit,value);

CPSC 225: Intermediate Programming = Spring 2025 111

Types of Exceptions

RuntimeException is a subclass of Exception

used to signal failed runtime checks

e.g. ArrayIndexOutOfBoundsException,
NullPointerException, IlTlegalArgumentException

generally the only one you'd throw is
IllegalArgumentException

generally should not be caught — fix the bug instead

CPSC 225: Intermediate Programming + Spring 2025 113

Types of Exceptions

Choose an appropriate exception type for your error.
"expected"

errors that conical + Java provides a number of exception types (though most
canbe ypea’y are for very specific purposes)

anticipated "unrecoverable” indicate X
and should errors: donet bus© * can also define your own
. catcl o not . N . . .
typically catch subclass Exception, RuntimeException, or an existing

be handled exception type

- catch

Question

Direct Known Subclasses:

. AcINotFoundException, ActivationException, AlreadyBoundException, ApplicationException, AW TException, BackingStoreException,
Exception (but not 12 2 2 BadAttributeValueExpException, BadBinaryOpValueExpException, BadLocationException, BadStringOperationException,
RuntimeExce pti ion } BrokenBarrierException, CertificateException, ClassNotFoundException, CloneNotSupportedException, DataFormatException,

DatatypeConfigurationException, DestroyFailedException, ExecutionException, ExpandVetoException, FontFormatException,
GeneralSecurityException, GSSException, IllegalAccessException, Illegal ClassFormatException, InstantiationException,
2 - 10 4 InterruptedException, IntrospectionException, InvalidApplication Exception, InvalidMidiDataException,
InvalidPreferencesFormatException, InvalidTargetObjectTypeException, InvocationTargetException, [OException, JAXBException,
MException, KeySelectorException, LastOwnerException, LineUnavailableException, MarshalException, MidiUnavailableException,
MimeTypeParseException, MimeTypeParseException, NamingException, NoninvertibleTransformException, NoSuchFieldException,
RuntimeException 3 2 11 NoSuchMethodException, NotBoundException, NotOwnerException, ParseException, ParserConfigurationException, PrinterException,

Error

PrintException, PrivilegedActionException, PropertyVetoException, RefreshFailedException, RemarshalException, RuntimeException,
SAXException, ScriptException, ServerNotActiveException, SOAPException, SQLException, TimeoutException,
TooManyListenersException, TransformerException, TransformException, UnmodifiableClassException,
UnsupportedAudioFileException, UnsupportedCallbackException, UnsupportedFlavorException, UnsupportedLookAndFeelException,
URIReferenceException, URISyntaxException, UserException, XAException, XMLParseException, XMLSignatureException,
XMLStreamException, XPathException

Direct Known Subclasses:
AnnotationTypeMismatchException, ArithmeticException, ArrayStoreException, BufferOverflowException,

CPSC 225: Intermediate Programming « Spring 2025 ann BufferUnderﬂovyExce_ption. Car_motRedoE:xce_pTion. Car!nmUndQExcept_ion. ClassCastExcepTior_n. CMMException, .

} ConcurrentModificationException, DataBindingException, DOMException, EmptvStackException, EnumConstantNotPresentException,

Catching Exceptions Catching Exceptions

A section of code that may throw an exception goes inside a When an exception is thrown, control immediately transfers
try block. to the nearest enclosing catch block.
matching means the thrown object's type is the same or a

One or mre catch bocks (one for each type of exception) T
?ﬁg&;g‘ code to be executed if that type of exception is matching catch is sought in the caller (and so forth) ’

Then —

« the body of the catch block is executed

» the finally block is executed (if any)

 control continues immediately following that try-catch

CPSC 225: Intermediate Programming + Spring 2025 117

Example 16, 20, abc, 30, ©, 40, and xy?|

int sum = 0;
for (; true ;) {

String input;
System.out.print("please type something: ");

input = scanner.nextLine();
int number = Integer.parselnt(input);

if (number == 0) { break; }
sum = sum+number;

}

System.out.println("the sum is: "+sum);

CPSC 225 Intermediate Programming = Spring 2025 118

Example 16, 20, abc, 30, 0, 40, and xy?7|

int sum = 0;

try {
for (; true ;) {

String input;

System.out.print("please type something: ");
input = scanner.nextLine();

int number = Integer.parselnt(input);

if (number ==) { break; }

sum = sum+number;

}
System.out.println("the sum is: "+sum);

} catch (NumberFormatException e) {
System.out.println("that wasn't a number!");

CPSC 225: Intermediate Programming + Spring 2025 120

Example 16, 20, abc, 36, 8, 46, and xy?|

int sum = 0;
for (; true ;) {

String input;
System.out.print("please type something: ");
input = scanner.nextLine();

try {
int number = Integer.parselnt(input);
if (number == 0) { break; }

sum = sum+number;

} catch (NumberFormatException e) {
System.out.println("that wasn't a number!");

}
}

System.out.println("the sum is: "+sum);

CPSC 225: Intermediate Programming = Spring 2025 119

Example 16, 20, abc, 30, 0, 40, and xy7|

int sum = 0;

try {
for (; true ;) {

String input;

System.out.print("please type something: ");
input = scanner.nextLine();

int number = Integer.parselnt(input);

if (number ==) { break; }

sum = sum+number;

}

} catch (NumberFormatException e) {
System.out.println("that wasn't a number!");

} finally {
System.out.println("the sum is: "+sum);

CPSC 225: Intermediate Programming + Spring 2025 121

Example 16, 20, abc, 30, ©, 40, and xy?|

int sum = 0;

try {
for (; true ;) {

String input;

System.out.print("please type something: ");
input = scanner.nextLine();

int number = Integer.parselnt(input);

if (number ==) { break; }

sum = sum+number;

} catch (NumberFormatException e) {
System.out.println("that wasn't a number!");

}

System.out.println("the sum is: "+sum);

CPSC 225 Intermediate Programming = Spring 2025 122

int[] numbers = new int[10];
for (int index = 0 ; index < numbers.length ;
index++) { numbers[index] = index; }

try {
for (; true ;) {

String input;
System.out.print("please type something: ");
input = scanner.nextLine();

try {
int number = Integer.parselnt(input);
if (number == 0) { break; }

System.out.println(numbers[number]);
} catch (NumberFormatException e) {

System.out.println("not a number!");
}

}
} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("not a legal index!");

e e i + gty g oo 4

int[] numbers = new int[10];

=for (int index = 0 ; index < numbers.length ;

index++) { numbers[index] = index; }
for (; true ;) {

String input;
System.out.print("please type something: ");
input = scanner.nextLine();

try {
int number = Integer.parselnt(input);
if (number == 0) { break; }
System.out.println(numbers[number]);

} catch (NumberFormatException e) {
System.out.println("that wasn't a number!");

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("not a legal index!");

)

}

CPSC 225: Intermediate Programming = Spring 2025 123

When should you use a finally block? Choose all that apply.

Answer Respondents Percentage

To ensure that
resources such as
files, network
connections, or

iVl database 14 32%
connections are
closed properly,
evenifan exception
occurs.
To catch exceptions the catch block is for error
and prevent the handling — the finally block
fi .
X ating e to 2 s% —» s executed regardless of
an unhanled whether or not an exception

exception.

occurred in the try block

To execute cleanup
code that must run
regardless of
whether an
VAl exception is thrown, 15 34%
such as resetting
variables, deleting
temporary files, or

releasing locks. —
- 125

When should you use a finally block? Choose all that apply. (1 el [k i 60 Eier

To replace the need handling — the finally block
x foracaichblock 1 2 — ™ is executed regardless of
y will X
always execute. whether or not an exception

occurred in the try block

To guarantee that a
certain piece of
code is executed
before the method

| technically correct but not
X X ifthe 12 27% —) A
exits, even if th the intent of finally
method contains
multiple return
statements.

public static void main (String[] args) throws Exception {

try {
System.out.println('A');

try {
System.out.println('B');
return;

} finally {
System.out.println('X');

} catch (Exception e) {
system.out.println('y');

} finally {
System.out.println('z');

-

CPSC 225! + Spring 2025 126

Not Catching Exceptions

You may choose not to catch/handle an exception in a
method.

e.g. the method can't solve the problem, but its caller might be
able to

A method that throws an exception (other than a
RuntimeException) without catching it must indicate that.

@exception tag in javadoc comments identifying exception type
and when it occurs

throws declaration in method header

CPSC 225: Intermediate Programming + Spring 2025 128

Caller's Responsibility

When the problem cannot be handled in the place it was
detected, the caller has two options for handling —

look before you leap

check for problematic conditions and only call the method if it
can succeed

leap before you look
call the method and deal with the error when it is signaled

Generally look first if you can. Prefer leaping if —
determining if the error condition exists is difficult
errors are signaled with exceptions (but not

RuntimeExceptions)
leap before you look int index = str.index0f(',"');
because determining if str if (index == -1) { ..} // handle error
has a comma requires String before = str.substring(0,index);

looking for a comma in str...

Example

/**
*
* @exception FileNotFoundException
* if specified file does not exist
* @exception IOException
e if an I/0 error occurs while reading the file
*/
public void load (String filename)
throws FileNotFoundException, IOException {

BufferedReader reader =
new BufferedReader(new FileReader(filename));

for (; true ;) {
String line = reader.readlLine();
if (line == null) { break; }

}
}

CPSC 225: Intermediate Programming + Spring 2025 129

Appropriate Use of Exceptions

Exceptions are handy, but they aren't for everything.

not appropriate for when the error can (and should) be handled
right away

System.out.println(“enter a number 1-10: “);
int number = scanner.nextInt();
for (; number < 1 || number > 10 ; 0 {
System.out.println(“number must be between
“1l and 10");
number = scanner.nextInt();

a

+

CPSC 225 Intermediate Programming = Spring 2025 130

In which of the following situations would it be most appropriate to
throw an exception instead of handling the issue directly or returning
aspecial value? Choose all that apply.

Answer Respondents Percentage

When a method
that expects a
positive number for
aparameter instead
receives a negative
number.

When a method
receives a filename
VAN o 2 parameter but 12 26%
the file doesn't
exist.

When auser enters when the user has entered
invalid or something, the correct

unrecognized input,

X suchasenteringa 10 2% ——W hand“ng of bad input is
negative number

when a positive known — have the user
numberis asked for. enter a new something

CPSC 225: Intermediate Programming + Spring 2025

int[] numbers = new int[10];
for (int index = 0 ; index < numbers.length ;

- index++) { numbers[index] = index; }

for (; true ;) {

String input;
System.out.print("please type something: ");
input = scanner.nextLine();

try {
int number = Integer.parselnt(input);
if (number == 0) { break; }
System.out.println(numbers[number]);

} catch (NumberFormatException e) {
System.ou LR that—wasn a—humber!");

} catch {CArrayIndexOutOfBoundsException e)
System.o At ln ("

. !
} catching a RuntimeException isn't generally the best style
} - what should you do instead?

CPSC 225: Intermediate Programming = Spring 2025

In which of the following situations would it be most appropriate to
throw an exception instead of handling the issue directly or returning
aspecial value? Choose all that apply.

When a method to
sort an array

receives an already- this is not an error — the
X sortedarray, since 2 4% method’s job is done! the

sorting is .
unnecessary in this array is sorted!

case.

When amethod to
remove an element

Il from a collection is 10 22%
called on an empty
collection.

When a method to
find a substringin a

“not found” is a normal,

string s called with expected outcome for find —

X asubstring that 4 9% — q
doesn't exist in the exceptions are meant for

string, such as problems
find("xyz"'zebra").

CPSC 225: Intermediate Programming + Spring 2025

