

CPSC 225: Intermediate Programming • Spring 2025 26

Omino – Process

• what do we add on to? what is provided? what do we
add on to? what do we have to create from scratch?
– write classes Block, Polyomino, Piece, Board from scratch
– write most of Game from scratch
– add on to Omino
– write most of OminoTester from scratch for testing
– specifically what to do is covered in the handout

• do we have to follow the instructions exactly?
– yes – you need to have the specific classes, instance variables,

and methods described, with exactly the names specified
• if names are not specified, use descriptive names and follow standard

conventions
• conventions to follow: see “Coding Standards” on the main course

webpage

CPSC 225: Intermediate Programming • Spring 2025 27

Omino – Process

• this is big and complicated…

– the handout is long because it breaks down the task into smaller
chunks and gives you a plan of attack – follow that!

• for each class, tackle the elements in the order listed – declare instance
variables, write the constructor(s), write each method, write (and run) test
cases

– tackle each chunk (class, method) separately
• when working on one chunk, don't worry about how that chunk is used by

the rest of the program – focus on that chunk's task as described in the
handout

– the contract defines that interface between the chunk and the rest of the
program – it's what the rest of the program expects of the chunk, so the chunk
just has to live up to it

– start early!

CPSC 225: Intermediate Programming • Spring 2025 28

Omino – Working With Classes and Objects

• write the class Block

CPSC 225: Intermediate Programming • Spring 2025 29

Omino – Working With Classes and Objects

• start with the class header

}

CPSC 225: Intermediate Programming • Spring 2025 30

Omino – Working With Classes and Objects

• declare instance variables
• write the constructor(s)

note naming convention – end
instance variable names with _

class invariants?
preconditions?

not in this case – while we won't
create blocks with negative values for
row or column, these values are
relative positions and so negative
values are valid

CPSC 225: Intermediate Programming • Spring 2025 31

Omino – Working With Classes and Objects

• write methods, one by one

identify and check preconditions

no parameters, so none to worry about here

check class invariants

none to check for this class, also getters
don't change anything so it's not useful to
check

CPSC 225: Intermediate Programming • Spring 2025 32

Omino – Working With Classes and Objects

• implement test cases

– tester subroutine to run a test case for each method being tested
– test cases in main

– similar to testers from labs 2 and 4

CPSC 225: Intermediate Programming • Spring 2025 34

Omino – Working With Classes and Objects

• how do the various classes relate to each other? when do I
make use of their instance variables and methods?
– reference to a class as a type

• recognize when the kind of thing matches with a class

– call a method to manipulate an object
• recognize when a task needs or manipulates information belonging to another object

“if it is legal to place the new piece in the new
position” →
if (board_.canPlace(newpiece,
 newrow,newcol)) { … }

private Board board_;

CPSC 225: Intermediate Programming • Spring 2025 35

Omino – Blocks and Polyominoes

• what are the rows and columns for blocks?
• how does the coordinate system work for polyomino

blocks?
• how does a string represent the blocks of a polyomino?

3

2

1

0

0 1 2 3 4

imagine a grid superimposed on the
polyomino, fit as tightly as possible to the
left and bottom edges of the shape
 - there may not be a block at (0,0) but there will
be at least one block in row 0 and in column 0

the blocks are (1,0), (0,1), (1,1), (0,2)
 - block (1,0) is in row 1, column 0

written as a string: 1 0 0 1 1 1 0 2

CPSC 225: Intermediate Programming • Spring 2025 36

Omino – Pieces and Rotating

• how does rotation work? what is the “next rotation”?
• what does getNumRotations() in Polyomino mean?

•

•

• why does rotation result in a new piece instead of
changing the positions of the blocks in the current piece?
– the piece should look like it is being rotated around its center,

which may require changing its position on the board

number of rotations is 2, because there
are two different possible orientations
for this polyomino

Polyomino constructor is given an array
of strings containing the possible
orientations:

orientation: 0 orientation: 1 the next rotation is the next one in the
sequence:
 - orientation 0 1, orientation 1 0→ →

{ “1 0 0 1 1 1 0 2”,
 “0 0 1 0 1 1 2 1” }

index refers to which slot in the
array of possible orientations

CPSC 225: Intermediate Programming • Spring 2025 37

Omino – 2D Arrays

• how do 2D arrays work?
– section 3.8.5 in the textbook

– a 1D array is like a row of boxes, with which box indexed by an
integer starting at 0

int[] arr1 = new int[10];
arr1[3] = 20;

• loop to go through each slot

– a 2D array is like a grid of boxes, with row and column each
indexed by an integer starting at 0

int[][] arr2 = new int[10][5];
arr2[3][1] = 20;

• nested loops to go through each slot

CPSC 225: Intermediate Programming • Spring 2025 38

Omino – 2D Arrays

• how to get blocks into the coordinate system of the
board?
– draw pictures (label what you

know) to help you figure it out!

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9

current piece position (13,4)
 – location in board coordinates of
where the piece's (0,0) block is

2

1

0

0 1

block (2,1) in the piece is at what
position on the board?

CPSC 225: Intermediate Programming • Spring 2025 39

Omino – 2D Arrays

• how do you clear rows?
– update the contents of the array
– draw before and after pictures to help you figure it out!

which cells of the board need to be updated?
 - go through each of them

what's the new value for each?

CPSC 225: Intermediate Programming • Spring 2025 40

Omino – Scoring

• how do you reward players for clearing multiple rows at
once?
– Board's clearRows method does the clearing and returns the

number of rows cleared

– Game's movePiece method calls clearRows

– Game has an array which relates the number of rows cleared to
the points scored

private static final int[] ROW_SCORE =
 { 0, 100, 250, 400, 800 };

CPSC 225: Intermediate Programming • Spring 2025 43

Omino – GUI and JavaFX

• how do you manage the user interaction? how does
pressing 'k' rotate a piece? how do you create all the
methods that handle moving blocks?

– the provided code handles detecting the user's key presses

– you write methods of the Game class that have the functionality of
what happens when the user presses keys

• the handout describes what these are and what they should do

– you add some code to the Omino class to link the key presses to
the Game methods

• the handout says what to do

CPSC 225: Intermediate Programming • Spring 2025 44

Omino – Correctness and Robustness

• does “testers” refer to test cases?
– “tester” refers to a class with a main program where test cases

for another class are implemented
• e.g. StringSetTester

– writing testers for Block, Polyomino, Piece, and Board is
important so you know that those classes work before you put
together the actual game play

CPSC 225: Intermediate Programming • Spring 2025 45

Omino – Correctness and Robustness

• how do we come up with test cases? how do we know
what the starting state would be?

– start with black box tests (what are the different
behaviors/outcomes?), then expand to white box tests (covering
all of the code in the method)

• for boolean methods, there are two behaviors: a “true” answer and a
“false” answer

– since you are testing class methods, the starting state is the
object the method is called on

• e.g. for Board's canPlace, the starting state would be a Board containing
some blocks (the input would be the parameters – a piece and a position
for the piece)

– you can use the same starting state and piece for several different test cases
by choosing different positions

CPSC 225: Intermediate Programming • Spring 2025 46

Omino – Correctness and Robustness

• when checking for things like trying to move a piece off
the side of a board, should we throw an exception, use an
assertion, or just not allow the action to happen?

– is this a correctness issue or a robustness issue?
• robustness, because it is about how the program is being used (the user

tries to move left too many times)
• → assertion or throwing RuntimeExceptions are not the right

mechanisms

– can the problem be handled in the same place it is detected?

• yes, the “is legal” check is detecting the problem and not updating the
current piece and position is how a problem is handled

– → no need to throw or catch exceptions

CPSC 225: Intermediate Programming • Spring 2025 47

Constants

• see section 4.8.3 in the book

private static final int BOARD_WIDTH = 10, BOARD_HEIGHT = 21;

CPSC 225: Intermediate Programming • Spring 2025 48

enums

• see section 2.3.5 in the book
– for the project, you only need to use enums – you don't need to

be able to write your own

• using Action
– enums can be used just like a class type for variable and

parameter declarations

–

– enum values are referenced like constants

• possible values are Action.LEFT, Action.RIGHT, Action.ROTATE,
Action.DOWN, Action.DROP

public void movePiece (Action action) { … }

game_.movePiece(Action.DROP);

if (action == Action.LEFT) { … }

CPSC 225: Intermediate Programming • Spring 2025 49

Omino – Graphics and JavaFX

• a simple representation of the
pieces is fine
– draw a solid color rectangle outlined

with black so you can tell the blocks
apart

– a fancier look is extra credit

• see section 3.9.1 for information on
drawing shapes
– set fill color and outline color
– fill and outline rectangles

– the GraphicsContext object needed is a parameter to the
drawBoard and drawCurrentPiece methods in Omino

– a color is type Color (from a javafx package, not java.awt)

CPSC 225: Intermediate Programming • Spring 2025 50

Omino – Coordinates

• board positions are (row,col) in a 2D
array

• drawing on the screen requires (x,y)
coordinates within the drawing area

board col

b
o
a
rd

 r
o
w

pixel x

p
ixe

l y

CPSC 225: Intermediate Programming • Spring 2025 51

Omino – Coordinates

board col

b
o
a
rd

 r
o
w

pixel x

p
ixe

l y

drawing the board means going through
each square of the board and, if occupied,
drawing a rectangle in the right spot

what's the pattern for going through every
slot of a 2D array?

for (int row = 0 ; row < height ; row++) {
 for (int col = 0 ; col < width ; col++) {
 }
}

need upper left corner of each rectangle – if
we just had variables with the right values…

for (int row = 0 ; row < height ; row++) {
 for (int col = 0 ; col < width ; col++) {
 …
 g.fillRect(top,left,BLOCK_SIZE,BLOCK_SIZE);
 …
 }
}

CPSC 225: Intermediate Programming • Spring 2025 52

Omino – Coordinates

board col

b
o
a
rd

 r
o
w

pixel x

p
ixe

l y

for (int row = 0, top = ?? ; row < height ;
 row++, top = ??) {
 for (int col = 0, left = ?? ; col < width ;
 col++, left = ??) {
 …
 g.fillRect(top,left,BLOCK_SIZE,BLOCK_SIZE);
 …
 }
}

to initialize – what are the right values for the
rectangle at row 0, col 0 on the board?

to update – how does top change when the
row increases? how does left change when
the col increases?

top and left can be added as loop variables
since we only need them for these loops

from this you might be able to work out formulas for
how to compute top and left given row and col – you
don't need those formulas to draw the board, but
they might be handy for drawing the current piece...

CPSC 225: Intermediate Programming • Spring 2025 53

Omino – Graphics and JavaFX

Technical note –

• to make the display update when you change values in
Game, use firePropertyChange

