Lab 2

Common problems —

missing categories of test cases

missing test cases within a category
most found the bugs in variant 1, but may not have caught other
problems

test case names not fully descriptive of what is being tested

test cases for invalid input
not needed!

incorrect test cases
make sure the expected result is actually the right answer!
note that the get*Winner routines for RPS return -1 for a tie

technical aspects of tester subroutines (RPSTester)
print enough to be able to determine if a test passed or failed

get*Winner routines return a value so the tester subroutine can

actually check and print passed/failed instead of requiring a manual
inspection

Lab 2

P check all behaviors — there are 8
legal timezone values

all should be checked

it is unknown whether there is

Time

public Time(string® zulu)

Create a time object using Zulu time. Separate handling for the timezone
Parameters: (E,C,M,P) and daylight/standard
zulu - time in the form HHmmZ e.g. 0815Z time (D,S) so best to check all the
combos
S what is tricky about the 12 hour

clock that might result in
handling errors?
there are AM and PM times — check

Return a formatted string for the time in the specified timezone. bOth

convert

public abstract String® convert(String¥ timezone)

public static void sort3(int a,
int b,
int c)

Print the three values a, b, ¢ in increasing order, separated by spaces. For example, if a, b, and ¢ have the values 10, 30, 20, respectively, the output
will be the line

10 20 30

Parameters:
a - first value to sort

b - second value to sort

¢ - third value to sort

sorting is about ordering

need to make sure that each possible ordering of smallest, middle, largest
values is correctly sorted

what about equal values?

check orderings involving duplicate values, including smallest-is-duplicate,
largest-is-duplicate, and all the same

what about 0 or negative values?

no reason to expect something other than <, <=, >, >=, == are used to
compare values and those don't require special handling for O or negative
values

what about large numbers or small numbers? what about numbers
that are close together or far apart?
ditto and ditto =

getRoundWinner

public static int getRoundWinner(char playerl,
char player2)
Get the winner for a single round. Rock breaks scissors, scissors cuts paper, paper covers rock.
Parameters:
playerl - player 1's play: R, B or S
player2 - player 2's play: R, B, or S
Returns:

the winning player (1 or 2), or -1 if there is a tie

Parameters: going past 12 — check conversions

timezone - one of EDT, EST, CDT, CST, MDT, MST, PDT, PST
Returns:
a string in the form 4:15 AM (EDT)

CPSC 225: Intermediate Programming + Spring 2025

that cross midnight and noon
handling 12, compared to 00 or 24
in Zulu time — check conversions
that end at midnight (and noon)

check all behaviors

there are three legal values for playerl and player2 — check
all combinations

there are three possible outcomes — checking all combinations
for playerl and player2 covers these

CPSC 225: Intermediate Programming + Spring 2025 60



getGameWinner

public static int getGameWinner(String® playerl,
string® player2,
int numuins)

Get the winner over multiple rounds. The winner is the first player to reach the specified number of wins. If either player runs out of plays before
there's a winner, the game is deemed a tie

Parameters:
playerl - player 1's plays, specified by a series of R, P, S characters

player2 - player 2's plays, specified by a series of R, B S characters
numwins - number of round wins needed to win the game

Returns:
the winning player (1 or 2), or -1 if the required number of wins isn't reached

Lab 2

 check all behaviors
there is not a finite set of inputs, so it is not possible to check all valid inputs

check all outcomes — player 1 wins, player 2 wins, tie because the required
number of wins isn’t reached
= ‘if either player runs out of plays before there’s a winner” — so there are actually three tie

cases (player 1 runs out of plays first, player 2 runs out of plays first, and they both run out of

plays at the same time)

* what other things could go awry?
the winner is the first player to reach the specified number of wins — which
means additional plays past that point should be ignored

= check case(s) where the winner if all of the plays are considered is not the first player to
reach numwins

CPSC 225 Intermediate Programming = Spring 2025

« things to revise in a resubmit

missing some more subtle categories of tests }» T
missing some test cases within a category individual feedback
other things noted in individual feedback — B EIEETEEl
on the preceding
slides to identify
what is missing

* reasons to resubmit even if you got 10

missing some more subtle categories of tests
missing some test cases within a category
other things noted in individual feedback

extra point for substantive resubmit

CPSC 225: Intermediate Programming = Spring 2025 62



