

CPSC 225: Intermediate Programming • Spring 2025 73

Analysis of Algorithms

There is often more than one way of doing something.
– implementing a collection of things

• e.g. use an array or a linked list to hold the elements?
• e.g. how to arrange the elements within the array or linked list

– algorithms
• e.g. sorting – insertion sort, selection sort, …

Which way is better?

Multiple criteria:
– time
– space
– simplicity

analysis of algorithms
focuses on evaluating these

CPSC 225: Intermediate Programming • Spring 2025 74

Key Ideas – Time

We are interested in:

• how the running time depends on the input size
– described by a function T(n)

• the growth rate of T(n) rather than its actual value
– the growth rate specifies how quickly T(n) increases with n

• asymptotic analysis
– what happens in the long run

(The same ideas can be applied to analyzing space
requirements.)

CPSC 225: Intermediate Programming • Spring 2025 75

Running Time

n – number of elements

T(n)

• the input size n is the number of elements in the
collection, being sorted, etc

• T(n) is the time is takes for the operation to run for an
input size of n

CPSC 225: Intermediate Programming • Spring 2025 76

Growth Rates

Growth rate means we
are looking at the shape
of T(n) rather than its
value.

Key observation #1 –
• multiplying T(n) by a

constant doesn't
change the shape

n – number of elements

T(n)

n – number of elements

T(n)

n, 2n, 3n, 10n, 30n all
have the same shape

n2, 2n2, 3n2, 10n2, 30n2 all
have the same shape

CPSC 225: Intermediate Programming • Spring 2025 77

Growth Rate

n – number of elements

T(n)

Key observation #2 –
• adding slower-growing terms to T(n) doesn’t change the

shape

n2, n2+10000, n2+100n
all have the same
shape as n2

n3/100 has a different
shape than n2 – it
grows much faster

100n has a different
shape than n2 – it
grows much slower

CPSC 225: Intermediate Programming • Spring 2025 78

Key Ideas – Time (and Space)

Why growth rate rather than actual elapsed time?
– growth rate provides an indication of whether the algorithm is

practical for large problems

– growth rate is easier to analyze
• allows analysis based on a high-level description of the algorithm rather

than requiring implementation or careful counting with detailed pseudocode
• avoids factors affecting elapsed time that are unrelated to the quality of the

algorithm
– e.g. machine speed and load, differences in programmer skill, compiler

optimizations, specific input tested, …

practical for large
problem sizes

not ideal, but not
out of the questionimpossible

beyond the
very smallest
problems

CPSC 225: Intermediate Programming • Spring 2025 79

Asymptotic Analysis

n – number of elements

T(n)

Asymptotic
analysis means
we are looking
at what happens
on this side of
the chart...

...not what is
over here.

CPSC 225: Intermediate Programming • Spring 2025 80

Key Ideas – Time (and Space)

Why asymptotic analysis?
– differences in growth rate have a much larger effect on the

actual running time when the input size is large

bigger
difference in
value for larger
n – which
algorithm is
used matters
more

not much
difference in
value for
small n – any
algorithm is
OK because
nothing takes
very long

CPSC 225: Intermediate Programming • Spring 2025 82 CPSC 225: Intermediate Programming • Spring 2025 83

CPSC 225: Intermediate Programming • Spring 2025 84

Common Growth Rates

f(n) when n... the running
time...

2n increases by 1 doubles

n3 doubles increases 8 times

n2 doubles increases 4 times

n log n

n doubles doubles

log n doubles increases by 1

1 doubles stays the same

CPSC 225: Intermediate Programming • Spring 2025 85

n2

n10

2n

CPSC 225: Intermediate Programming • Spring 2025 86

Implications for Algorithm Design

Θ fast computer 1000x faster

1 n is irrelevant n is irrelevant

log n any n is fine any n is fine

n still practical for n =
1,000,000

still practical for n =
1,000,000,000n log n

n2 usable up to n = 10,000
hopeless for n > 1,000,000

usable up to n = 300,000
hopeless for n > 30,000,000

2n impractical for n > 40 impractical for n > 50

n! useless for n ≥ 20 useless for n ≥ 22

CPSC 225: Intermediate Programming • Spring 2025 87

Implications for Algorithm Design

Θ running time on fast
computer

characteristics of typical tasks with
the specified running time

1 n is irrelevant examine/do only a fixed number of
things

log n any n is fine repeatedly eliminate a fraction of the
search space e.g. binary search

n

still practical for n = 1,000,000

examine each object a fixed number
of times e.g. sequential search

n log n
divide-and-conquer with linear time
per step
e.g. mergesort, quicksort

n2 usable up to n = 10,000
hopeless for n > 1,000,000

examine all pairs (nested loops)
e.g. insertion sort, selection sort

n3 examine all triples

2n impractical for n > 40 enumerate all subsets

n! useless for n ≥ 20 enumerate all permutations

CPSC 225: Intermediate Programming • Spring 2025 88

Analysis of Algorithms – “Sloppy” Counting

T(n) is the time it takes for the program to run on
an input of size n.

e.g. the time it takes to insert an element into an
array with n elements or to sort n numbers

CPSC 225: Intermediate Programming • Spring 2025 89

“Sloppy” Counting

constant
multiplicative factor
(time per machine

instruction)

T(n) is the time it
takes for the
program to run on
an input of size n.

The computer is actually
executing machine
language instructions.

Since each machine language instruction takes the same amount of time to carry
out, T(n) is proportional to the number of instructions executed – and has the same
growth rate. So we can count the number of machine language instructions
executed to understand T(n) instead timing the running program with a stopwatch.

CPSC 225: Intermediate Programming • Spring 2025 90

“Sloppy” Counting

constant
multiplicative factor

(at most a small
number of machine

language instructions
per Java statement)

The computer is actually
executing machine
language instructions.

The program is written in
Java.

Not every statement in Java translates into the same
number of machine language instructions, but there
is an upper bound – say, one Java statement
translates into at most 5 machine language
instructions. Then T(n) is proportional to the number
of Java statements executed – and has the same
growth rate. So we can count the number of Java
statements executed to understand T(n) instead of
counting machine language instructions or timing
the running program with a stopwatch.

CPSC 225: Intermediate Programming • Spring 2025 91

“Sloppy” Counting

The program is written in
Java. An algorithm is expressed in

pseudocode.

constant
multiplicative

factor
(at most a small
number of Java
statements per

pseudocode step)

Not every pseudocode step translates into the same number of Java statements,
but there is an upper bound – say, one pseudocode step translates into at most 5
Java statements. Then T(n) is proportional to the number of pseudocode steps
executed – and has the same growth rate. So we can count the number of
pseudocode steps executed to understand T(n) instead of counting Java
statements or machine language statements or timing the running program with
a stopwatch.

CPSC 225: Intermediate Programming • Spring 2025 92

“Sloppy” Counting

1

1

1

1
drop lower-
order terms

Not every block contains the same number
of pseudocode steps, but there is an upper
bound – say, one block contains at most 10
steps. Then T(n) is thus proportional to the
number of blocks executed – and has the
same growth rate. So we can count the
number of blocks executed to understand
T(n) instead counting statements or timing
the running program with a stopwatch.

constant
multiplicative factor

(at most a small
number of steps

per block)

The two blocks before and after the
while loop don't affect the
asymptotic behavior – as n grows,
the difference in value between n
and n+2 becomes insignificant
compared to the value itself. So we
can focus just on the most-repeated
parts to understand T(n).

CPSC 225: Intermediate Programming • Spring 2025 93

“Sloppy” Counting

Thus –
• focus on loops, and how the number of loop repetitions

depends on the size of the input
– identify what repeats the most

But –
• be aware of hidden loops – a method call is not

one line of code, but rather all of the lines of
code in its body

