

CPSC 225: Intermediate Programming • Spring 2025 89

Lab 3

• the class comment should reference that this class represents a Roman
numeral in standard form

• the constructor that takes a string as a parameter should specify that the
string be in standard form

• toString’s return value is a string in standard form

• for all types – are any values of that type legal?
– standard form can only represent values 1-3999
– String parameter to constructor must be in standard form

• for object types – what about null?
• for Strings – what about the empty string?

CPSC 225: Intermediate Programming • Spring 2025 90

Lab 3

• preconditions for public constructors/methods are checked with an if –
throw an IllegalArgumentException if violated
– violated precondition is the fault of other code, not this method

• consider return values – is any value of that type possible as a return?
– toString() returns a standard form representation of the Roman

numeral
– toInt() returns an integer in the range 1-3999

• check with assertions – violated is the fault of this method’s code

CPSC 225: Intermediate Programming • Spring 2025 91

Lab 3

• do that!

• check class invariants with assertions – if they are violated, it is this
method’s fault

• needed for the int-parameter constructor and addTo
• can be omitted for the String-parameter constructor if the precondition is

checked, though checking the class invariant does verify that the instance
variable was initialized

• unnecessary for toString(), toInt(), add as they do not change
numeral_

CPSC 225: Intermediate Programming • Spring 2025 92

Lab 3

•

precondition – should be
mentioned in the Javadoc
comment and checked in the
code

postconditions – should be
mentioned in the Javadoc
comment and checked in the
code

use assertions to check private
method preconditions and
postconditions – violation is the
fault of other code in this class

CPSC 225: Intermediate Programming • Spring 2025 93

Lab 3

• this refers to variable initialization
– local variables must be given a value before use but instance variables and

array slots have default values
– but always explicitly initialize instance variables and array slots

• include a case in the if for each alternative
– this doesn’t say every if must have an else – “do nothing” is a valid

alternative – just that every alternative other than do nothing should have a
case in the if

int curplayer = 1;
if (score2 < score1) {
 curplayer = 2;
}

int curplayer;
if (score2 < score1) {
 curplayer = 2;
} else {
 curplayer = 1;
}

the case of curplayer being 1 is
handled by passing through the if an explicit case for each alternative –

curplayer set to 2 and curplayer set to 1
CPSC 225: Intermediate Programming • Spring 2025 94

Lab 3

• “outside data” is from outside the program or module – user input,
parameter values

→ error-check user input, check preconditions

• “scope” refers to where a name (variable, parameter, method,
class) is visible and usable within a program

• reduce vertical scope by reducing the distance between declaration
and use
– declare variables close to where they are first used rather than all at once at

the beginning of a method or block
– declare variables as locally as possible – inside a block if they are only used

there

• the principle does not refer to keeping method bodies short, though
that is also a good practice

CPSC 225: Intermediate Programming • Spring 2025 95

Lab 3

• be informative and reveal intent
– e.g. player1, player2 store what about a player? – most likely identity-

related info (name, id) in the absence of other context, but the reader is
forced to rely on assumptions

• but also be concise – longer is not automatically better
– don’t repeat what is clear from context

• e.g. naming methods flip and play to carry out the (whole) flip and play actions is fine
because “flip” and “play” are understood terms within the context of the game Flip –
flipDie, playDice doesn’t add anything

• e.g. sum(dice) vs sumArray(dice), calculateDiceSum(dice) – the array parameter
means mentioning “array” in the method name is unnecessary, and the dice parameter
(particularly with well-named variables) provides the context to distinguish summing dice
from some other sum operation

– every part of the name should add something
• e.g. flipIt, playIt – “it” doesn’t add any meaning or clarity

CPSC 225: Intermediate Programming • Spring 2025 96

Lab 3

• length is a proxy for specificity – short = more generic / less detail,
long = more specific / more detail
– more generic (shorter) variable names are OK in small scopes such as a loop

body because it is more apparent from context what that name refers to
• such names are more unclear in larger scopes, such as method bodies or as instance

variables
• e.g. a loop variable i for an array index is clear within a small for loop because it is clear

from the loop pattern that it is just a current finger moving through the array – but an instance
variable i_ is less clear because the declaration is well separated from the loop or other
usage that indicates what that index is for

– functions with larger scopes (e.g. public methods rather than private ones)
are more likely to be called often and to have a higher level of abstraction, so
names should be shorter and less detailed

• always be as concise as possible
– this principle isn’t saying to make names longer just to make them longer but

rather to consider the level of detail included in the name and include more
detail (only) when needed

CPSC 225: Intermediate Programming • Spring 2025 97

Lab 3

• “disinformation” refers to names that are misleading because they
include words with meanings at odds with the purpose of the
variable/method
– e.g. int[] numlist – in Java, a list is something different from an array so

numlist misleads the reader about the type of variable
– e.g. using x, y to refer to positions within a 2D array or row, col to refer to

pixel locations within a drawing window – goes against conventions and is
especially confusing because x↔col and y↔row

– e.g. using dice1, dice2 to refer to player 1’s flipped and unflipped dice is
misleading because 1, 2 are expected to refer to player 1 and player 2

• use established terms
– e.g. the flip rules refer repeatedly to “the middle” – so middle, referring to the

dice collection in the middle, is understood while sharedDicePool is both
unfamiliar (not referenced in the rules so what is it?) and potentially
misleading (it sounds like a collection of dice both players can draw
from...which is the case, but only in very specific circumstances)

CPSC 225: Intermediate Programming • Spring 2025 98

Lab 3

• “make meaningful distinctions” means that the difference between
similar names/variables should be clear
– e.g. score1, score2 to distinguish between player 1’s score and player 2’s

score is clear because there is a notion of player 1 and player 2 but scoreA,
scoreB is less clear

– e.g. flipped1, unflipped1 to distinguish between player 1’s flipped and
unflipped dice is clear but dice1A, dice1B is not

• “one word per concept” means to use the same word or naming
scheme for the same/similar concepts
– e.g. player_one and player2 or dice_one and score1 – either use words or

numbers to refer to which player, then use that for all things belonging to a
particular player

