Lab 3

* Add to the class comment, constructor comments, and public method comments to reflect that RomanNumerat is intended
to support Roman numbers in standard form as described in the Wikipedia link above.

Lab 3

 the class comment should reference that this class represents a Roman
numeral in standard form

« the constructor that takes a string as a parameter should specify that the
string be in standard form

+ toString’s return value is a string in standard form

« Check the preconditions identified — write code! For complex checks like "in standard form", first break the check down
into simpler pieces — what properties does a Roman numeral in standard form have? (e.g. What symbols can appear?
What order do they appear in? What rules are there for consecutive symbols?) Then write a descriptively-named
private helper method to do each check. For now those helper methods can be placeholders and simply return true.

« preconditions for public constructors/methods are checked with an if —
throw an IllegalArgumentException if violated

violated precondition is the fault of other code, not this method

* Add preconditions for the public constructors and methods as appropriate. Some preconditions may already have been
identified in the previous step, but also be sure to consider limits on valid values for any parameters. Don't forget to
consider values like nu11 or an empty string. (Are those valid?) "Add" means to include a statement of the precondition
in the relevant comment.

« Add postconditions for the public methods as appropriate. "Add" means to include a statement of the postcondition in
the relevant comment.

« for all types — are any values of that type legal?

standard form can only represent values 1-3999

String parameter to constructor must be in standard form
« for object types — what about null?
» for Strings — what about the empty string?

CPSC 225 Intermediate Programming = Spring 2025 89

Lab 3

+ consider return values — is any value of that type possible as a return?

toString() returns a standard form representation of the Roman
numeral

toInt() returns an integer in the range 1-3999
» check with assertions — violated is the fault of this method’s code

CPSC 225: Intermediate Programming = Spring 2025 %

Lab 3

State this class invariant: add a comment to the declaration of numeral _ reflecting the intention (and assumption) that it
is in standard form.

* do that!

Check this invariant at the end of every constructor and public method — write code! As with the preconditions, break
complex checks into simpler properties that can be checked and write descriptively-named private helper methods for
each simpler properties. These helpers can be placeholders that simply return true.

+ Add and check pre- and postconditions for the provided private helper methods (toAdditive, toSubtractive, merge,
condense, getSymbolValue, toInt, and toRoman). Since these methods support the particular implementation of
RomanNumeral's functionality (there's already thinking about algorithms that went into their creation), the pre- and
postconditions have been identified for you — look for comments at the beginning and/or end of the bodies for each of
those methods. "Add" here refers to adding information to the public comments for the method; "check" means writing
code. As in earlier steps, break complex conditions down into simpler properties and write descriptively-named private
helper methods to check (but you don't need to implement the bodies).

+ check class invariants with assertions — if they are violated, it is this
method’s fault

* needed for the int-parameter constructor and addTo

+ can be omitted for the St ring-parameter constructor if the precondition is
checked, though checking the class invariant does verify that the instance
variable was initialized

* unnecessary for toString(), toInt(), add as they do not change
numeral_

CPSC 225: Intermediate Programming + Spring 2025 o1

use assertions to check private
method preconditions and
roman postconditions — violation is the

string representation of a Roman numeral fault of other code in this class
additive form of 'roman®

* Convert to additive form (replacing subtractive pairs).

*/
private String toAdditive (String roman) {
// expect standard (subtractive)

precondition — should be
mentioned in the Javadoc
comment and checked in the
code

String expanded = roman. replace("CH","DCCCC) ;
expanded = expanded.replace("CD","CCCC");

expanded = expanded.replace("XC","LXXXX");
expanded = expanded.replace
expanded = expanded. replace(
expanded = expanded. replace("Iv",

XHKHXK") 5
VIIII");

postconditions — should be

// the symbols should be in order from highest value to lowest (M, D, C, L, “#T

VAR mentioned in the Javadoc
L et wibs 1 cauivatent o tronan” <4 comment and checked in the

i code

CPSC 225: Intermediate Programming + Spring 2025 92

Lab 3

Lab 3

« Don't rely on default values.

« Don't trust outside data.

this refers to variable initialization

local variables must be given a value before use but instance variables and
array slots have default values

but always explicitly initialize instance variables and array slots

“outside data” is from outside the program or module — user input,
parameter values
- error-check user input, check preconditions

« Don't rely on pass through behavior in conditionals.

« Reduce vertical scope.

include a case in the if for each alternative

this doesn’t say every if must have an else — “do nothing” is a valid
alternative — just that every alternative other than do nothing should have a
case in the if

int curplayer;

int curplayer = 1; if (score2 < scorel) {
® if (score2 < scorel) { curplayer = 2;
curplayer = 2; } else {

curplayer = 1;
the case of curplayer being 1 is ¥
handled by passing through the if e an explicit case for each alternative —

CPSC 225 Intermediate Programming = Spring 2025 curplayer setto 2and curplayer setto 1

Lab 3

“scope” refers to where a name (variable, parameter, method,
class) is visible and usable within a program

reduce vertical scope by reducing the distance between declaration
and use

declare variables close to where they are first used rather than all at once at
the beginning of a method or block

declare variables as locally as possible — inside a block if they are only used
there
the principle does not refer to keeping method bodies short, though
that is also a good practice

CPSC 225: Intermediate Programming = Spring 2025 %

Lab 3

« Names should reveal intent.

« Names should be informative so comments describing what the variable is for should generally not be necessary.

« Avoid short variable names and long function names in large scopes.

be informative and reveal intent
e.g. playerl, player2 store what about a player? — most likely identity-
related info (name, id) in the absence of other context, but the reader is
forced to rely on assumptions

but also be concise — longer is not automatically better

don’t repeat what is clear from context
e.g. naming methods flip and play to carry out the (whole) flip and play actions is fine
because “flip” and “play” are understood terms within the context of the game Flip —
flipDie, playDice doesn’t add anything
e.g. sum(dice) vs sumArray(dice), calculateDiceSum(dice) —the array parameter
means mentioning “array” in the method name is unnecessary, and the dice parameter
(particularly with well-named variables) provides the context to distinguish summing dice
from some other sum operation

every part of the name should add something
e.g. flipIt, playIt — “it" doesn't add any meaning or clarity

CPSC 225: Intermediate Programming + Spring 2025 9%

length is a proxy for specificity — short = more generic / less detalil,
long = more specific / more detail

more generic (shorter) variable names are OK in small scopes such as a loop
body because it is more apparent from context what that name refers to

such names are more unclear in larger scopes, such as method bodies or as instance
variables

e.g. a loop variable i for an array index is clear within a small for loop because it is clear
from the loop pattern that it is just a current finger moving through the array — but an instance
variable i_ is less clear because the declaration is well separated from the loop or other
usage that indicates what that index is for
functions with larger scopes (e.g. public methods rather than private ones)
are more likely to be called often and to have a higher level of abstraction, so
names should be shorter and less detailed

always be as concise as possible

this principle isn’t saying to make names longer just to make them longer but
rather to consider the level of detail included in the name and include more
detail (only) when needed

CPSC 225: Intermediate Programming + Spring 2025 %

Lab 3

Lab 3

« Avoid disinformation.

“disinformation” refers to names that are misleading because they
include words with meanings at odds with the purpose of the
variable/method

e.g. int[] numlist —in Java, a list is something different from an array so
numlist misleads the reader about the type of variable

e.g. using x, y to refer to positions within a 2D array or row, col to refer to
pixel locations within a drawing window — goes against conventions and is
especially confusing because x - col and y - row

e.g. using dicel, dice2 to refer to player 1's flipped and unflipped dice is
misleading because 1, 2 are expected to refer to player 1 and player 2

use established terms

e.g. the flip rules refer repeatedly to “the middle” — so middle, referring to the
dice collection in the middle, is understood while sharedDicePool is both
unfamiliar (not referenced in the rules so what is it?) and potentially
misleading (it sounds like a collection of dice both players can draw
from...which is the case, but only in very specific circumstances)

CPSC 225 Intermediate Programming = Spring 2025

« Make meaningful distinctions and pick one word per concept.

“make meaningful distinctions” means that the difference between
similar names/variables should be clear
e.g. scorel, score?2 to distinguish between player 1's score and player 2's

score is clear because there is a notion of player 1 and player 2 but scoreA,
scoreB is less clear

e.g. flippedl, unflipped1 to distinguish between player 1's flipped and
unflipped dice is clear but dicelA, dicelB is not

“one word per concept” means to use the same word or naming
scheme for the same/similar concepts

e.g. player _one and player2 or dice one and scorel — either use words or
numbers to refer to which player, then use that for all things belonging to a
particular player

CPSC 225: Intermediate Programming = Spring 2025 %8

