Omino

 things commonly omitted

tester — OminoTester should contain test cases for Polyomino,
Piece, Board as specified in the handout

Omino

Testing:

Like Block, Polyomino mostly just holds information and provides access to it. There are a couple of things worth
testing, though.

Add tester subroutines and test cases for getNextRotation and getBlocks {0 OminoTester. FOr getBlocks, though,
there's a wrinkle — checking that an array of Blocks has the right contents is a bit cumbersome. Address this
by adding a private helper method blocksToString t0 OminoTester. blocksToString Should take an array of Blocks
and return a string formatted like the strings given to Polyomino (i.€. in the form r1 c1 r2 c2 r3 ¢3 ...). You
can then use blocksToString to make a String version of the Blocks array for easier comparison with the
expected result.

 be sure to follow the specifications in the handout

include all of the methods specified, named as directed (when a
name is given) and with the parameters specified
* no reason to change the order of the parameters from how they are listed

* canPlace, Which takes a piece and its current position (row and column) as parameters and returns
whether it is possible to add the piece to the board in that position

¢ addPiece, Which takes a piece and its current position (row and column) as parameters and adds the
piece to the board

comments — Javadoc-style comments for classes and methods

preconditions — consider preconditions for all methods

« identify them in the method comments and check them in the method
body

CPSC 225 Intermediate Programming = Spring 2025 107

Omino

CPSC 225: Intermediate Programming = Spring 2025 108

Omino

inappropriate information. Also choose descriptive names and follow consistent and standard conventions for
naming and whitespace. It is strongly recommended that you follow the 225 programming_standards.
Autoformat will take care of many potential whitespace-related issues, including improper indentation and too-
long lines. Use blank lines for grouping and organization within longer methods.

° naming conventions

end instance variable names with _
constants in ALL CAPS

name boolean methods so that the code reads well in an if
statement
e compare if (board.getStatus(row,col)) { .. } to
if (board.isOccupied(row,col)) { .. } or
if (board.hasPiece(row,col)) { .. } or
if (board.pieceAt(row,col)) { .. }
+ convention is isXYZ but other readable versions are OK

CPSC 225: Intermediate Programming + Spring 2025 109

¢ There are two versions of Color — you want the JavaFX version. Review the import Statements at the
very beginning of each class that involves color (Polyomino, Piece, etc) — if you see import
java.awt.Color;, delete it and either replace it with import javafx.scene.paint.Color; or choose the import
involving a javafx package from the auto-fix suggestions.

° remove any import java.awt.Color; statements and
replace with import javafx.scene.paint.Color;

Board

Board is the main playing area where the pieces land. It is represented as a grid of squares with (0,0) in the
lower left corner, and keeps track of which pieces the blocks occupying squares come from.

* (0,0) for the board should be in the lower left corner, not
the upper left corner
rows get smaller as pieces move down the board

CPSC 225: Intermediate Programming + Spring 2025 110

Omino

o computewidth, which takes an array of Blocks and returns the width

* computeHeight, which takes an array of Blocks as a parameter and returns the height

compute the dimensions of the piece in its 1} height
current orientation
H_/

(not the number of blocks / length of the array) .

Omino

* canPlace, Which takes a piece and its current position (row and column) as parameters and returns
whether it is possible to add the piece to the board in that position

* addpPiece, which takes a piece and its current position (row and column) as parameters and adds the
piece to the board .

check/update all of the board positions covered

by blocks of the piece, not just (row,col)
(row,col) might not even be covered by a block of
the piece

(row,col) = (13,4)

CPSC 225 Intermediate Programming = Spring 2025

Omino

it can be awkward to have to preemptively undo
something — instead only update it when needed

for (inti=0; i<n; i++) {
if (.) {

ie
}
}

for (inti=0; i<n;) {
if (.) {
} else {
i++;

}
}

CPSC 225: Intermediate Programming + Spring 2025 113

robustness

printing a message is not appropriate error-handling if the error
stems from values coming from outside the method
throw IllegalArgumentException for violated preconditions

make sure the program doesn’t crash if the user tries to move a
piece off the side of the board
instance variables and helper methods should be private

constants should be static (and final)
private| static final|String[][] POLYOMINOES =
", "0 061 02"}

{{"00 10 20 ’
{90 10 01", "006 61 11", "1 61 11", "0 10 11"} };

CPSC 225: Intermediate Programming = Spring 2025 112

