Java Collections

Containers like List, Stack, Queue have many applications
and are commonly used.

The Java Collections Framework provides implementations
of these (and other collections ADTS).

CPSC 225 Intermediate Programming = Spring 2025

Generics

The definition of List, Stack, or Queue doesn’t depend on
the specific type of element in the container.

* java.util.List<E> .
supports rank-based operations (by index) <E> is a type parameter
only sequential access operations are add * defines what kind of element is in
(at the end) and iterator the collection
- f i . t be a class type - Integer,
java.util.Stack<E> s - )
add, remove, access elements only at the Double, Boolean, etc instead of int,
top double, boolean
X i * can exploit autoboxing to handle
* java.uti.Queue<gE> conversions between primitive types
add elements at the back, access and and their class versions

remove elements at the front

» Java supports parameterized types where a specific type
can be provided when the type is used
<E> indicates a class with one type parameter named E
E is used in the definition in place of a specific type

there’s nothing special about E specifically or even a single letter for the type
parameter name — convention is that type parameter names are often single =
letters, and E is a convenient choice to represent an element type 6

Java Collections — Containers

Containers are characterized by the idea of the elements
arranged in a line (ordered, not sorted).
elements accessed by position

* java.util.List<E>
supports rank-based operations (by index) D D D D D

only sequential access operations are add
(at the end) and iterator

* java.util.Stack<E>
add, remove, access elements only at the

top oy b peh o oo
° java.util.Queue<E>

add elements at the back, access and Emu;llllln,e,aueue

remove elements at the front ‘I

CPSC 225: Intermediate Programming = Spring 2025

You want to create a list of integers in Java. What should you write?
Choose all that apply.

Answer Respondents Percentage

ArrayList<Integer>
list=new

v 0,
ArrayList<Integer> 7 78%
[bE

ArrayList<int> list =
x new ArrayList<int> 0 0%
0:

ArrayList<int[]> list
X =new - 0 0% legal but not ideal

ArrayList<int{]>(): because it requires
more casting and you

ArrayList<Object> 2 .
trade compile-time

list = new
x ; ) 2 22% - ;
ArrayList<Object> typecheckmg for
& runtime typechecking
— better to catch errors
sooner
CPSC 225: Intermediate Programming « Spring 2025 27



Assume the following variable definitions:

Arraylist<Integer= numlist = new ArraylList<Integer=();

int x = 5;

Which of the following statements are legal syntax? Choose all that

apply.
Answer Respondents Percentage
numlist.add(5): 7 32%
X numlist.add(5.5); o] 0%
x numlist.add(5.0); 0 0%
not legal because
ArraylList<Integer>
X numlist.add("hello"); 1 5% w———— VLS ge

means that only

numlist.add(x); 6 27%

integers can be added

int y = numlist.get(0); 6 27%

Stringy = o
numlist.get(0): 0 0%

Stringy = . ‘
(String)numlist.get(0); 2 9%

not legal because
| can’t cast from

CPSC 225 Intermediate Programming = Spring 2025

. Integer to String

java.util.List<E>

Java Collections — Containers

Method Summary

How

can you find out what methods are supported?

google java 17 classname to find the API

* java.util.List<E>
¢ java.util.Stack<E>
¢ java.util.Queue<E>

CPSC 225: Intermediate Programming = Spring 2025 29

java.util.List<E>

boolean

add(E e)
Appends the specified element to the end of this list (optional operation).

void

add(int index, E element)

Inserts the specified element at the specified position in this list (optional operation).

boolean

addAll(cCollection<? extends E> ¢)
Appends all of the el in the specified collection to the end of this list, in the order that they are returned by the

specified collection’s iterator (optional operation).

boolean

addAll(int index, Collection<? extends E> c)
Inserts all of the elements in the specified collection into this list at the specified position (optional operation).

void

clear()
Removes all of the elements from this list (optional operation).

boolean

contains(Object o)
Returns true if this list contains the specified element.

boolean

containsAll(Collection<?> c)
Returns true if this list contains all of the elements of the specified collection.

boolean

equals(Object o)
Compares the specified object with this list for equality.

get(int index)
Returns the element at the specified position in this list.

hashcCode()
Returns the hash code value for this list.

indexof (Object o)
Returns the index of the first occurrence of the specified element in this list, or -1 if this list does not contain the

element.

boolean

isEmpty()
Returns true if this list contains no elements.

Iterator<g>

iterator()
Returns an iterator over the elements in this list in proper sequence.

CPSC 225: Intermediate Programming + Spring 2025

int|lastIndex0f(Object o)
Returns the index of the last occurrence of the specified element in this list, or -1 if this list does not contain the
element.
ListIterator<e>|1listIterator()
Returns a list iterator over the elements in this list (in proper sequence).
ListIterator<E>|1istIterator(int index)
Returns a list iterator of the elements in this list (in proper sequence), starting at the specified position in this list.
E|remove(int index)

Removes the element at the specified position in this list (optional operation).

boolean [remove(object o)
Removes the first occurrence of the specified element from this list, if it is present (optional operation).

boolean |removeAll(Collection<?> c)
Removes from this list all of its elements that are contained in the specified collection (optional operation).

boolean|retainAll(Collection<?> c)
Retains only the elements in this list that are contained in the specified collection (optional operation).

E[set(int index, E element)
Replaces the element at the specified position in this list with the specified element (optional operation).
int|size()

Returns the number of elements in this list.

List<e> [subList(int fromIndex, int toIndex)
Returns a view of the portion of this list between the specified fromIndex, inclusive, and toIndex, exclusive.

Object[]|toArray()

Returns an array containing all of the elements in this list in proper sequence (from first to last element).

<> T |toArray(T[] a)
Returns an array containing all of the elements in this list in proper sequence (from first to last element); the runtime

type of the returned array is that of the specified array.
e —
e —
CPSC 225: Intermediate Programming + Spring 2025 31




java.util.Stack<E> and java.util.Queue<E>

Collections Inheritance Hierarchy

Method Summary

boolean |empty ()
Tests if this stack is empty.

E|peek()
Looks at the object at the top of this stack without removing it from the stack.

Elpop()
Removes the object at the top of this stack and returns that object as the value of this function.

E|push(E item)
Pushes an item onto the top of this stack.

int|search(Object o)
Returns the 1-based position where an object is on this stack.

Method Summary

boolean |add(E e)
Inserts the specified element into this queue if it is possible to do so immediately without violating capacity restrictions,
returning true upon success and throwing an I1legalStateException if no space is currently available.

Elelement()
Retrieves, but does not remove, the head of this queue.

boolean|of fer (E )
Inserts the specified element into this queue if it is possible to do so immediately without violating capacity restrictions.

E|peek()
Retrieves, but does not remove, the head of this queue, or returns null if this queue is empty.

E|poll()
Retrieves and removes the head of this queue, or returns null if this queue is empty.

E|remove()
Retrieves and removes the head of this queue.

CPSC 225 Intermediate Programming = Spring 2025

Usage

Declare variables, parameters, and return types using the
most general type that is appropriate.

List<E>, Stack<E>, Queue<E>

code better reflects the actual concepts

allows for greater flexibility and reusability

New objects can only be created using a concrete class.
Choose the appropriate implementation based on the
needed operations and their efficiency.

ArrayList<E>vs LinkedList<E>, Stack<E>, ArrayDeque<E>
vS LinkedList<E>

linked lists avoid cost of growing/shrinking and shifting, but are
inefficient for accessing at a particular index

a rough guideline: use ArrayList<E> for lists and
LinkedList<E> for queues

CPSC 225: Intermediate Programming + Spring 2025

java.util.Collection<E>
interface you can use any of these as

types for variables,

parameters, return values

java.util.List<E>
abstract class List<Integer> list is OK

concrete classes are ArrayList<E>,

LinkedList<E> you can't create instances of

abstract classes or interfaces,
. . only concrete classes
java.util.Stack<E>

concrete class

new List<Integer>() is not

java.util.Queue<E>

interface
concrete classes are ArrayDeque<E>,
LinkedList<E>
CPSC 225: Intermediate Programming » Spring 2025 33

Example

Reverser
ListDemo

CPSC 225: Intermediate Programming + Spring 2025 35



