Array-Based Implementations

Observations —
doesn't involve a loop

things arrays are good for — ©(1) - same number of
. . steps regardless of the
accessing a particular slot (random access) sjze of the array

inserting or removing elements at the end

inserting or removing elements in the middle when the order
doesn't need to be preserved (can swap with the last thing)

involve a loop - number
. of steps depends on the
things arrays are less good for — ©(n)  size of the array

inserting or removing elements in the middle when the order
needs to be preserved

varying-size collections when you have to grow or shrink
doubling the size mitigates the expense of copy over a series of insertions

CPSC 225 Intermediate Programming = Spring 2025 21

Arrays vs. Linked Lists

Advantages of linked lists —

no need to grow when full because nodes are
allocated/deallocated as needed
no empty slots
though arrays still have an advantage in space usage as long as
they are at least half full
insert/remove don't require shifting

much faster than array if insertion point is known (otherwise
requires time to find node)

Advantages of arrays —

random access

linked lists support sequential access only — must scan forward
from head

simpler if the number of elements doesn’t change

Linked List-Based Implementations

Observations —
doesn't involve a loop
things linked lists are good for — ©(1) - same number of
. steps regardless of the
accessing the head length of the list

inserting or removing elements at the head
inserting at the tail with a tail pointer
removing the tail if doubly-linked
inserting or removing after a node
inserting or removing before a node if doubly-linked
involve a loop -

number of steps
depends on the

things linked lists are less good for — ©(n) iength of the list
accessing a particular position (no random access)
inserting or removing at a particular position
inserting or removing before a node (if singly-linked)

CPSC 225: Intermediate Programming = Spring 2025 22



