

Program Design and Implementation

CPSC 225: Intermediate Programming • Spring 2025 2

Program Design and Representation

• program design refers to identifying the classes and their
methods
– the projects have provided some examples of how complex

programs can be made more manageable by breaking them up
into chunks

• data structures and related operations – SolitaireDeck, Board
• other data types – Block, Polyomino, Piece
• functionality – Game, KeystreamGenerator

• representation refers to deciding on what information is
important to store and how to store it
– we've seen different ways to store collections of values

• concrete data structures (arrays, linked lists, binary trees)
• arrangement / ordering of values (where the top of stack / front of queue

goes, unsorted, sorted, binary search tree)
• ADTs (List, Stack, Queue, PriorityQueue, Map, Set, …)

CPSC 225: Intermediate Programming • Spring 2025 3

Program Design – Fundamentals of OOAD

• OOAD – object-oriented analysis and development

The idea of object-oriented programming is that the
organization of the program should match how you think
and talk about the problem.

• a program manipulates values that represent the ideas in
the problem

– classes reflect key concepts/things
• often things which need some kind of representation (data storage) in the

program, but classes can also exist only to group together related
functionality

– instance variables store information about those things

– methods provide ways to access/use/manipulate the stored
information

CPSC 225: Intermediate Programming • Spring 2025 4

Program Design – Fundamentals of OOAD

Other goals of object-oriented design –

• modularity
– because small, independent chunks are easier to understand

(and reuse)

• encapsulation and information hiding
– because it is easier to understand a chunk if you don't have to

deal with all the details of how it does what it does (information
hiding)

– because isolating implementation decisions means you can
change your mind about them – or support multiple alternatives
– without changing the rest of the program (encapsulation)

→ want to group related values together into an object
and protect the actual variables by providing only
appropriate methods to manipulate those values

CPSC 225: Intermediate Programming • Spring 2025 5

methods apply to objects

classes should be identified first
because that gives methods a
home

CPSC 225: Intermediate Programming • Spring 2025 6

Textual Analysis

Textual analysis is a simple strategy that provides a starting
point for identifying classes and methods.

• classes reflect key concepts/things, and nouns refer to
things
– identify nouns as potential classes
– but not every noun – some may be synonyms or things that don't need to be

represented in the program

• methods provide ways to access/use/manipulate the
stored information, and verbs refer to processes
– identify verbs as potential methods
– when considering future reuse, also include operations that make sense for

the concept even if not specifically needed for this application

CPSC 225: Intermediate Programming • Spring 2025 7

while the words for key
concepts that will
become classes are
likely to be occur more
frequently, frequency
alone isn’t the criteria
for a potential class

identifying variables
focuses on values, while
classes are about types
for those values

while thinking about
values provides a prompt
for thinking about the
types of those values,
identifying specific
variables gets farther into
specific algorithms and
implementation details
than we want at the
design stage

verbs describe
operations (methods),
not concepts and
things (classes)

CPSC 225: Intermediate Programming • Spring 2025 8

the user interface is what the user
sees and interacts with when they
use the program – while there may
need to be elements to allow the user
to do actions that are verbs in the
problem description, OOAD is about
the design of the program’s code and
not the appearance of the UI

attributes involve values – player’s
score, player’s name – which are
nouns rather than verbs (and will be
instance variables rather than
methods)

verbs translate into methods which
are part of the class definition, but
they don’t correspond directly to
classes themselves
e.g. “add the card to the hand”
translates into an add method in the
Hand class, not an AddCard class –
“add card” isn’t a kind of thing

CPSC 225: Intermediate Programming • Spring 2025 9

Example

• things
– card
– hand of cards
– deck

• methods – access/manipulation of the stored info
– card – get value, get suit
– hand – add card (at the end), add card at a position, get card at a

position, remove card at a position
– deck – shuffle, deal card

h
tt

p
s:

//
fr

e
e
sv

g
.o

rg
/n

in
e
-o

f-
sp

a
d
e
s-

p
la

yi
n
g
-c

a
rd

-v
e
ct

o
r-

ill
u
st

ra
ti

o
n

h
tt

p
s:

//
co

m
m

o
n
s.

w
ik

im
e
d
ia

.o
rg

/w
ik

i/
Fi

le
:H

a
n
d
_o

f_
ca

rd
s.

jp
g

h
tt

p
s:

//
w

w
w

.p
u
b
lic

d
o
m

a
in

p
ic

tu
re

s.
n
e
t/

e
n
/v

ie
w

-i
m

a
g
e
.p

h
p
?i

m
a
g
e
=

1
1
8
7

3
&

p
ic

tu
re

=
d
e
ck

-o
f-

ca
rd

s

CPSC 225: Intermediate Programming • Spring 2025 10

Completing the Design

• identify instance variables – consider information storage
– textual analysis – look for attributes associated with the concepts

that become classes
• e.g. player’s score

– consider representation – what values capture the concept of
each class? what values are referenced or manipulated by the
methods identified?

• complete the design

– is all of the program's functionality accounted for?
• e.g. main program
• classes may also exist primarily to gather together related functionality

– is everything the program needs to keep track of accounted for?
• may be local variables in main or another class or additional instance

variables in an already-identified class

CPSC 225: Intermediate Programming • Spring 2025 11

Example

• things
– card
– hand of cards
– deck

• methods – access/manipulation of the stored info
– card – get value, get suit
– hand – add card (at the end), add card at a position, get card at a

position, remove card at a position
– deck – shuffle, deal card

• instance variables – relevant information about the things
– card – value, suit
– hand – the cards in the hand (and their order)
– deck – the cards in the deck (and their order) h

tt
p
s:

//
fr

e
e
sv

g
.o

rg
/n

in
e
-o

f-
sp

a
d
e
s-

p
la

yi
n
g
-c

a
rd

-v
e
ct

o
r-

ill
u
st

ra
ti

o
n

h
tt

p
s:

//
co

m
m

o
n
s.

w
ik

im
e
d
ia

.o
rg

/w
ik

i/
Fi

le
:H

a
n
d
_o

f_
ca

rd
s.

jp
g

h
tt

p
s:

//
w

w
w

.p
u
b
lic

d
o
m

a
in

p
ic

tu
re

s.
n
e
t/

e
n
/v

ie
w

-i
m

a
g
e
.p

h
p
?i

m
a
g
e
=

1
1
8
7

3
&

p
ic

tu
re

=
d
e
ck

-o
f-

ca
rd

s

CPSC 225: Intermediate Programming • Spring 2025 12https://localscrabble.files.wordpress.com/2011/11/scrabble-1.jpg

the correct answers are all nouns –
in most cases, corresponding to
physical elements of the game
(things you can point to)

CPSC 225: Intermediate Programming • Spring 2025 13

not every noun needs to become a
class that we write – these types
are well-represented by existing
Java types

just a char value

just an int value

just an int value

CPSC 225: Intermediate Programming • Spring 2025 14

verbs correspond to methods, not
classes

verb

verb

CPSC 225: Intermediate Programming • Spring 2025 15

sometimes nouns are really verbs

a noun, but a definition of a kind of
letter – determining if a letter is a
consonant is a process (verb)

sometimes used to refer to a
process – “scoring zero”

as a section header, it refers to
rules for how to award points

in both cases, “scoring” is really
about the action of updating points

a noun, but a definition of a kind of
letter – determining if a letter is a
vowel is a process (verb)

“challenge” can be a noun or a
verb, but in context it refers to the
player challenging a move – an
action (verb)

“turn” is a noun, but in context it
refers to the player taking actions –
it is really the verb “take turn”

CPSC 225: Intermediate Programming • Spring 2025 16https://en.wikipedia.org/wiki/Scrabble

CPSC 225: Intermediate Programming • Spring 2025 17https://en.wikipedia.org/wiki/Scrabble CPSC 225: Intermediate Programming • Spring 2025 18https://en.wikipedia.org/wiki/Scrabble

CPSC 225: Intermediate Programming • Spring 2025 19

Implementing Classes

• program design refers to deciding on classes and their
methods

• implementing a class requires deciding what to store
(instance variables) and how to store it (type)
– as a collection

• a concrete data structure – array, linked list, tree
• from the Java Collections Framework – List, Stack, Queue, PriorityQueue,

Map, Set
• another collection type – e.g. BinaryTree, Trie, PrefixTree

– as a single variable of some existing type
– as an object made up of one or more single variables and

collections – a new type

CPSC 225: Intermediate Programming • Spring 2025 20

Choosing an Implementation

How to choose between different implementations?
• consider the properties of your data, the manipulations you need,

and the semantics of the available types

Look for:
• a logical match – a type whose concept matches the properties of

your thing, and which supports at least the operations you need
(and ideally not too many more)
– write your own class if the only choices have too many operations that aren't

relevant – but you could still save effort by using one of those choices to
implement your class

• efficiency for the operations you'll use
– more critical for large quantities of data
– more critical for frequently-used operations

• ease of implementation – a slightly less efficient solution can be
worthwhile if you can utilize existing code
– especially for prototyping
– hide the choice inside a class (private instance variable or helper method) or

method (in the method body) for easy changing later

CPSC 225: Intermediate Programming • Spring 2025 21

Choosing Between Collections ADTs

Use a queue when –
• you want things out in the same order you put them in

Use a priority queue when –
• you want to remove things in sorted order but you don't necessarily

have all of the things at the beginning

Use a stack when –
• you want things out in the reverse of the order you put them in
• you want to access the most recent thing added

Use a list when –
• stacks and queues don't serve your needs
• need to insert/remove/access at any position

Use a dictionary when –
• you want to associate values with keys and do efficient lookup

Use a set when –
• you want to ask questions (only) about membership

CPSC 225: Intermediate Programming • Spring 2025 22

Programming With Collections

• use the JCF class matching the ADT whenever possible
– in variable, parameter, and type declarations
– List, Stack, Queue, PriorityQueue, Map, Set

• use a specific implementation only when creating new
objects
– choose based on efficiency for the operations that you need to

use or that will be used most often
– List: ArrayList, LinkedList

• ArrayList for rank-based operations, LinkedList only if rank-based
operations are not or are only rarely needed

– Queue: ArrayDeque, LinkedList
• LinkedList for most applications

– Map: HashMap, TreeMap
• HashMap unless you need to iterate through the keys in sorted order

– Set: HashSet, TreeSet
• HashSet unless you need to iterate through the elements in sorted order

CPSC 225: Intermediate Programming • Spring 2025 23

Example

• things
– card
– hand of cards
– deck

• instance variables – relevant
information about the things
– card – value, suit
– hand – the cards in the hand

(and their order)
– deck – the cards in the deck (and

their order)

• methods – access/manipulation
of the stored info
– card – get value, get suit
– hand – add card, add card at a

position, get card at a position,
remove card at a position

– deck – shuffle, deal card

each of these has associated info (instance
variables) and operations (methods), so they
should become classes

value and suit are simple things (each is a
single value per card) but the possible
values – value includes “ace” and “king”,
suit is “spades”, “diamonds”, “clubs”,
“hearts” – don't match existing Java types

the best solution here is to define Value
and Suit as enums – an enum defines a
new type by its set of allowed values – but
if you aren't familiar with enums, integer
constants (e.g. 0 means spades, 1 means
diamonds, etc) are an alternative

for the cards in the hand, the order is
determined by things external to the hand
and random access (accessing any position
at any time) is needed – List is the ADT
supporting external-to-the-collection
ordering, and ArrayList is the
implementation that supports random
access CPSC 225: Intermediate Programming • Spring 2025 24

Example

• things
– card
– hand of cards
– deck

• instance variables – relevant
information about the things
– card – value, suit
– hand – the cards in the hand

(and their order)
– deck – the cards in the deck (and

their order)

• methods – access/manipulation
of the stored info
– card – get value, get suit
– hand – add card, add card at a

position, get card at a position,
remove card at a position

– deck – shuffle, deal card

for the cards in the deck, the order is
determined by the deck and random
access is needed for shuffling – List is the
ADT supporting external-to-the-collection
ordering, and ArrayList is the
implementation that supports random
access

the getters need no parameters and return
a value or suit, which will be of the same
type as the corresponding instance
variables
int getValue ()
int getSuit ()

a card will be of type Card, and positions
are naturally numbered by integers
void addCard (Card card)
void addCard (Card card, int pos)
Card getCard (int pos)
Card removeCard (int pos)

neither operation needs parameters, and a
card will be of type Card
void shuffle ()
Card dealCard ()

