

CPSC 225: Intermediate Programming • Spring 2025 7

Inheritance

• inheritance defines an “is-a” relationship between classes

 public class Apple extends Fruit {
 …
 }

– an apple is a (kind of) fruit

• subclasses inherit everything – instance variables and
methods – except constructors
– even private things, though they cannot be accessed directly
– new access modifier: protected allows only the class and its

subclasses to access

CPSC 225: Intermediate Programming • Spring 2025 8

Inheritance

Subclasses –

• can add new elements (instance variables and methods)
– a new method has a different header (name and/or number/type

of parameters)

• can redefine (override) or extend methods
– same header, new body
– to extend, also invoke superclass version

• must define one or more constructors (in most cases)
– constructor should first call superclass constructor, then initialize

only the instance variables for its own class

• cannot redefine instance variables

• cannot remove instance variables or methods already
defined

CPSC 225: Intermediate Programming • Spring 2025 9

Subclasses

you can change method bodies but not method headers or variable declarations

you can change runtime elements but not compile-time elements

declarations (variables, method headers) are like clothes – they define the outward
appearance
 → the compiler goes by the clothes: if it looks like a duck, great! it can be asked to quack

method bodies are the real identity under the clothes – they define what happens if you
ask the object to do something
 → the runtime system asks for a quack, but it’s the real thing underneath the clothes that
determines what exactly that quack sounds like

CPSC 225: Intermediate Programming • Spring 2025 10

Inheritance

class B extends A means –
• B has every instance variable A has
• B has every method header and body A has
(even if declared private in A – B has it, it just can't access it directly)

B does not inherit A's constructors.

In addition –
• B can add new instance variables
• B can add new method headers and bodies
• B can redefine a method of A – same header, different

body

But B cannot take away anything A has or change types.

access modifier protected
allows only the class and its
subclasses to access

CPSC 225: Intermediate Programming • Spring 2025 11

public class A {

 private int x_;

 public A (int x) {
 x_ = x;
 }

 public void set (int x) {
 x_ = x;
 }

 public int get () {
 return x_;
 }
}

public class B extends A {

 private int y_;

 public B (int x, int y) {
 super(x);
 y_ = y;
 }

 public int get () {
 return 2*super.get();
 }

 public int getOther () {
 return y_;
 }
}

B inherits x_ and adds y_
B inherits set
B redefines (overrides) get
B adds getOther CPSC 225: Intermediate Programming • Spring 2025 12

Inheritance

• this refers to the current
layer of the onion

• super refers to the next
layer in

• an object is like an onion, with each class in the
inheritance hierarchy describing a layer

• top-level class is at the core

CPSC 225: Intermediate Programming • Spring 2025 13

neither

Syntax

this

super

neither

super

this

this, super are
both valid but not
required

this is valid but not
required

CPSC 225: Intermediate Programming • Spring 2025 14

Inheritance

• this refers to the current layer
of the onion
– allows reuse of constructor bodies

within the current layer
– used to disambiguate between

instance variables and parameters in
the current layer with the same name

• avoid by using _ for instance variables

– it doesn’t allow duplicate methods or
instance variables

• super refers to the next layer in
– necessary to construct the inner

layers of the onion
– used to call the version of the current

method defined in the superclass
layer

– it doesn’t move definitions around

CPSC 225: Intermediate Programming • Spring 2025 15

Example

A bank account has an account number, an owner (a name), and a
balance. All three values can be retrieved, and the owner can be
changed. Money can be deposited into or withdrawn from the
account, but the balance can't drop below 0.

A checking account is a kind of bank account. It has an account
number, an owner (a name), and a balance. All three values can be
retrieved, and the owner can be changed. Money can be deposited
into or withdrawn from the account, but the balance can't drop below
0. You can also write checks on the account.

A savings account is a kind of bank account. It has an account
number, an owner (a name), a balance, and an interest rate. All four
values can be retrieved, and the owner can be changed. Money can
be deposited into or withdrawn from the account, but the balance can't
drop below 0. At the end of every month, the interest accumulated
over that month is added to the balance.

• write classes BankAccount, CheckingAccount, and
SavingsAccount with the elements and functionality
specified, utilizing inheritance as appropriate

CPSC 225: Intermediate Programming • Spring 2025 16

Inheritance

Inheritance is often talked about as a way to reuse existing
classes or code – but while this often occurs, it is not why
inheritance should be used.

Create subclasses (only) when both –
• “is a”, “is a kind of” language makes logical sense, and
• everything inherited from the superclass makes sense for

the subclass

• this is known as the Liskov Substitution Principle
• introduced by Barbara Liskov in 1987
• she won the 2008 Turing Award for work leading to

the development of object-oriented programming
(the Turing Award is kind of like the Nobel Prize for computer science
– it's a big deal)

CPSC 225: Intermediate Programming • Spring 2025 17

Inheritance and the Liskov Substitution Principle

Should Circle extend Ellipse?

Circle “is a kind of” Ellipse...

But Circle inherits setXRadius() and
setYRadius(), allowing the following –

Circle c = new Circle();
c.setXRadius(5);
c.setYRadius(10);

This doesn't make sense for Circle!
(so no, Circle should not extend Ellipse)

CPSC 225: Intermediate Programming • Spring 2025 18

Code Reuse Without Inheritance

• favor composition if LSP does not apply

ellipse: Ellipse

implement Circle
using an Ellipse
instance variable

Circle’s methods
then call the
appropriate
methods of
Ellipse – reuse
Ellipse’s code
without violating
LSP

CPSC 225: Intermediate Programming • Spring 2025 19

Polymorphism

• an effect of inheritance is that we can avoid repeating
code in the implementation of different related things

• polymorphism allows us to avoid repeating code in the
usage of different related things
– it is legal to write obj.func(p) if obj is an instance of a type

that has a method func that takes a parameter of the type p is
– B extends A and B implements A mean that B has all of

the method headers that A has – so if obj.func(p) is legal
when obj is of type A, it is also legal when obj is of type B

This lets us view a type declaration (for a variable or
parameter) as really just a declaration of what operations we
might want to use on that object.

– this is the reason behind the advice “declare using the most
general type appropriate” – if you don't intend to use a method,
don't require that the object support it
• e.g. use List<...> for type declarations and
ArrayList<...> only for new

CPSC 225: Intermediate Programming • Spring 2025 20

Binding

B extends A – but what if B overrides a method in A?
Which method body is called?

public class A {
 private int x_;
 public A (int x) { x_ = x; }
 public int getValue () { return x_; }
}

public class B extends A {
 public B (int x) { super(x); }
 public int getValue () { return 2*super.getValue(); }
}

• for type checking at compile time, the declared type is
used – what the compiler can see

• for method invocation at run time, the actual type is used
– so it does what you want

CPSC 225: Intermediate Programming • Spring 2025 21

