

CPSC 225: Intermediate Programming • Spring 2025 192

Exam 1

• #1a is about correctness – be sure to account for
everything listed, and to both identify (comments) and
appropriately check (code) each thing
– The cash register cannot contain a negative number of

bills/coins of any denomination, and denominations can only be
positive numbers.

• class invariant: denominations_[i] > 0, counts_[i] > 0
– state in comments by the instance variable declarations
– check using assertions at the end of every constructor/method that can

change those values – the constructor, add, and dispense

– There can only be one slot in the drawer for a given
denomination.

• the denominations are initialized in the constructor, so this is a
precondition for the constructor’s parameter

– state that the denominations must be unique in the constructor’s comment
– check at the beginning of the constructor body – throw an
IllegalArgumentException if violated

CPSC 225: Intermediate Programming • Spring 2025 193

Exam 1

• #1 is about correctness and robustness – be sure to
account for everything listed, and to both identify
(comments) and appropriately check (code) each thing
– Counts and amounts cannot be negative.

• preconditions: count >= 0 for add, dispense; amount >= 0 for
makeChange

– state in the comments for those methods
– check at the beginning of the method bodies – throw an
IllegalArgumentException if violated

–

CPSC 225: Intermediate Programming • Spring 2025 194

Exam 1

• #1 is about correctness and robustness – be sure to
account for everything listed, and to both identify
(comments) and appropriately check (code) each thing
– The cash register cannot dispense more of a given denomination

than it holds, and it may be unable to make change if it doesn’t
have enough of certain denominations.

• that it cannot dispense more than it holds is a precondition for dispense:
count <= getCount(denom)

– state in the comments for dispense
– check at the beginning of the method body – throw an

IllegalArgumentException if violated
• not being able to make change is an error, but not a precondition – there’s

no way for the caller to know if there’s the right amount of change
– state in the comments for makeChange
– if in the process of making change it is found that there isn’t enough change,

throw an exception – this isn’t an IllegalArgumentException and it is fine to
just throw an Exception rather than a more specific type

CPSC 225: Intermediate Programming • Spring 2025 195

Exam 1
• #1b is about robustness – be sure to check for and

appropriately handle what can go wrong
– a number < 0 is entered for denom

• check with an if statement – print an error message and go to the next iteration of
the loop (continue)

– the clerk should be given another chance to enter a valid value

– a number < 0 is entered for count
• check with an if statement – print an error message and go to the next iteration of

the loop (continue)
– the clerk should be given another chance to enter a valid value

– a non-integer is entered for denom or count
• Scanner will throw an InputMismatchException – put a try-catch block

around the body of the loop so that the loop continues with the next iteration and
print an informative error message for the user in the catch block

– the clerk should be given another chance to enter a valid value

– makeChange might not be able to make change
• put a try-catch block around the makeChange call to catch the exception and print

an informative error message
– not enough is paid (paid < total)

• add an else and print an informative error message

CPSC 225: Intermediate Programming • Spring 2025 196

Exam 1

• #3 – test cases are about testing correct behavior
– e.g. don’t need to test if violated preconditions throw an

exception

