Exam 1

#1a is about correctness — be sure to account for
everything listed, and to both identify (comments) and
appropriately check (code) each thing

The cash register cannot contain a negative number of
bills/coins of any denomination, and denominations can only be
positive numbers.
class invariant: denominations [i] > 0O, counts [i] > 0O
state in comments by the instance variable declarations

check using assertions at the end of every constructor/method that can
change those values — the constructor, add, and dispense

There can only be one slot in the drawer for a given

denomination.

the denc_)r_ninations are initialized in the constructor, so this is a
precondition for the constructor’s parameter
state that the denominations must be unique in the constructor's comment

check at the beginning of the constructor body — throw an
IllegalArgumentException if violated

CPSC 225! Intermediate Programming « Spring 2025 192

Exam 1

#1 is about correctness and robustness — be sure to
account for everything listed, and to both identify
(comments) and appropriately check (code) each thing

The cash register cannot dispense more of a given denomination
than it holds, and it may be unable to make change if it doesn’t
have enough of certain denominations.
that it cannot dispense more than it holds is a precondition for dispense:
count <= getCount(denom)
state in the comments for dispense
check at the beginning of the method body — throw an
llegalArgumentException if violated
not being able to make change is an error, but not a precondition — there’s
no way for the caller to know if there’s the right amount of change
state in the comments for makeChange
if in the process of making change it is found that there isn't enough change,
throw an exception — this isn’t an lllegalArgumentException and it is fine to
just throw an Exception rather than a more specific type

CPSC 225 Intermediate Programming + Spring 2025 194

Exam 1

#1 is about correctness and robustness — be sure to
account for everything listed, and to both identify
(comments) and appropriately check (code) each thing

Counts and amounts cannot be negative.
preconditions: count >= 0 for add, dispense; amount >= 0 for
makeChange
state in the comments for those methods

check at the beginning of the method bodies — throw an
IllegalArgumentException if violated

CPSC 225 Intermediate Programming « Spring 2025 193

Exam 1

#1b is about robustness — be sure to check for and
appropriately handle what can go wrong

a number < 0 is entered for denom
check with an if statement — print an error message and go to the next iteration of
the loop (continue)
the clerk should be given another chance to enter a valid value
a number < 0 is entered for count
check with an if statement — print an error message and go to the next iteration of
the loop (continue)
the clerk should be given another chance to enter a valid value
a non-integer is entered for denom or count

Scanner will throw an InputMismatchException — put a try-catch block
around the body of the loop so that the loop continues with the next iteration and
print an informative error message for the user in the catch block

the clerk should be given another chance to enter a valid value
makeChange might not be able to make change
put a try-catch block around the makeChange call to catch the exception and print
an informative error message
not enough is paid (paid < total)
add an else and print an informative error message

CPSC 225! Intermediate Programming + Spring 2025 195



Exam 1

* #3 — test cases are about testing correct behavior

e.g. don’t need to test if violated preconditions throw an
exception

CPSC 225! Intermediate Programming « Spring 2025



