

CPSC 225: Intermediate Programming • Spring 2025 10

Flip Individual Feedback Notes

• not every instance of something is marked in the
individual feedback
– don’t stop with addressing only what is indicated – consider

whether those things apply elsewhere in the program

• make sure comments are included
– a class comment with a brief description of the program and your

name
– comments for each method describing its task, what its

parameters are for, and what is returned
– use Javadoc style
– individual feedback did not address comments

• be sure to thoroughly test your program
– bugs were noted as noticed, but individual feedback focused on

the bigger picture of addressing specifications and program
construction

CPSC 225: Intermediate Programming • Spring 2025 11

Flip Individual Feedback Notes

• review your program for user friendliness
– feedback addresses only the minimum requirement that there is

enough output for players to be able to follow and play the game
– how easy is it for users to get the information they need?

• whose turn it is
• what they need to decide on a legal and strategic move – their dice vs

their opponent’s dice, which of their dice are flippable, …

– how easy it is for users to specify their moves and other input?
how closely does it match with what the user is thinking, and
how much do they have to type?

CPSC 225: Intermediate Programming • Spring 2025 12

Flip – Rules and Game Play

• a player cannot flip the same die twice without playing
– a player can choose to flip several turns in a row, but a different

die must be chosen each time

• the player takes back dice from the middle after one of
their dice has been played
– dice are moved from the middle to that player’s collection, not

simply removed from the middle

• the player whose dice was played should pick the dice
they want to remove from the middle
– the program should not do this automatically

• a player is not required to take back dice from the middle
after one of their dice has been played, even if there are
dice they could take
– (not taking dice might be a poor strategy, but poor strategy isn’t

against the rules)

CPSC 225: Intermediate Programming • Spring 2025 13

Flip – Game Play

• it is not necessary to detect whether or not a move is
possible as long as there’s a way for the player to back
out if they’ve chosen an impossible option
– e.g. a player without any flippable dice at the start of a turn –

they can still be presented with the option to flip or play, but
when prompted to pick a die to flip, there should be a way to pick
“no die” and instead choose play

– but it is OK to prevent these situations if you want (it’s a nice
feature)

CPSC 225: Intermediate Programming • Spring 2025 14

Flip – Robustness

For satisfactory mastery –

• ensure that only legal moves are made and the program
doesn’t crash if the user enters a bad value

CPSC 225: Intermediate Programming • Spring 2025 15

Flip – Robustness

For proficient or outstanding mastery –

• handle the possibility of there not being a legal value to
enter
– players should not be able to get stuck in impossible situations
– e.g. a player chooses to flip, but when prompted for the die to

flip, discovers that they have no flippable dice...and the prompt
requires a legal die to flip

• either don’t present the option to flip if there are no flippable dice, or have
a way for the player to indicate “no die” and return to the choice to flip or
play

• avoid harsh consequences for invalid input
– e.g. forfeiting a turn
– printing an error message is a good start, but the player should

generally be given a chance to correct the problem – reprompt
instead of moving on

CPSC 225: Intermediate Programming • Spring 2025 16

Flip – Robustness

A strategy for handling robustness for input –

• start by assuming correct usage – get the program
working without error-checking user input

• create a “get the value” function for each place where
user input is read and checking is needed
– move the code that prints the prompt and reads the value to the

function
– return the value read

• turn the functions into “get a legal value” functions
– decide on how the function will indicate “not possible to get a

legal value”
– add error-checking (and reprompting) to the function
– update the calling code to handle “not possible to get a legal

value” getting returned

CPSC 225: Intermediate Programming • Spring 2025 17

Flip – Code Organization

• use subroutines to increase readability and untangle
distinct tasks
– keep subroutine bodies short (including for main)
– consider a subroutine for a task with complex logic – more than

a few lines, tricky or non-obvious reasoning – especially if that is
done more than once

– avoid combining several distinct tasks that happen to involve the
same loop into a single loop

• e.g. adding up the players’ dice

• recognizing that this is really two
tasks summing player 1’s dice and
summing player 2’s dice – also
makes it easier to see how a sum
function can be used to improve
readability and avoid repeated code

int sum1 = 0, sum2 = 0;
for (int i = 0 ; i < 5 ; i++) {
 sum1 += dice1[i];
 sum2 += dice2[i];
}

int sum1 = 0;
for (int i = 0 ; i < 5 ; i++) {
 sum1 += dice1[i];
}
int sum2 = 0;
for (int i = 0 ; i < 5 ; i++) {
 sum2 += dice2[i];
}

int sum1 = sum(dice1),
 sum2 = sum(dice2);

CPSC 225: Intermediate Programming • Spring 2025 18

Flip – Code Organization

• use parameterized subroutines and a current player
variable to avoid repeated code

– avoid repeating taking-a-turn steps for each player
• the only difference between player 1’s turn and player 2’s turn is who is

considered the player and who is considered the opponent
e.g. private void takeTurn (int[] player, int[] opponent,
 int[] middle) { … }

then call takeTurn(dice1,dice2,middle) and takeTurn(dice2,dice1,middle)

– avoid repeating the sequencing of turns for each possibility for
who goes first

• structure the main game play loop as repeating “do current player’s turn,
update current player” instead of repeating “do player 1’s turn, do player
2’s turn” (or “do player 2’s turn, do player 1’s turn”)

CPSC 225: Intermediate Programming • Spring 2025 19

Flip – Code Organization

• subroutines should have well-defined tasks

– subroutines should generally do only one job: get input, compute
or do something, or produce output

• e.g. print dice, sum dice

– avoid subroutines that simply group a series of lines of code
• a red flag is a name like “start round” or “finish round” – if there’s not a

name which identifies the subroutine’s task more specifically, it’s not a
well-defined task

CPSC 225: Intermediate Programming • Spring 2025 20

Flip – Defensive Programming

• consider functions to compute values instead of storing
redundant information
– e.g. while (numdice(dice1) > 0 ||
 numdice(dice2)) { … }
instead of storing both the players’ dice (dice1, dice2) and
separate numdice1, numdice2 variables

– this avoids the bug of forgetting to update one value when the
other changes

– there is a tradeoff in terms of running time – it takes more time to
go through an array to compute a value than to look up a stored
value – but for this application that time is not significant

CPSC 225: Intermediate Programming • Spring 2025 21

Flip – Programming Style

• prefer local variables in main to global static variables
– prefer passing values to subroutines via parameters
– prefer returning values instead of setting global variables

CPSC 225: Intermediate Programming • Spring 2025 22

Flip – Representation

• the handout described storing counts instead of the dice
values themselves

– use slot i of the array to store the count for dice with value i – so
slot 1 stores the 1s, slot 2 stores the 2s, etc

• slot 0 is unused
• this avoids having to always remember -1 or +1 when going between dice

values and array indexes – a common source of bugs

– since it was in “hints and suggestions” rather than a list of
requirements, it is OK if you solved the problem another way
(arrays, ArrayList)

– make sure you read handouts carefully, and ask if there are
instructions or information you don’t understand

CPSC 225: Intermediate Programming • Spring 2025 23

Flip – Scanner

• only create one Scanner object for System.in, not one
each time you need to read input
– OK for this to be a global static variable (initialized in main), or

pass it as a parameter to subroutines that need input

• Scanner can read input of various types
– e.g. scanner.nextInt(), scanner.nextBoolean()
– use scanner.nextLine() (only) when you specifically need a

line of text
– caveat: only scanner.nextLine() consumes the trailing

newline that comes when the user presses Enter after their input
• defensive programing – get in the habit of always including
scanner.nextLine() after another use of scanner when reading user
input

CPSC 225: Intermediate Programming • Spring 2025 24

Flip – Other

• use the default package
– Eclipse’s “create class” dialog tries to put classes in a package –

delete the suggested entry there
– if your classes aren’t under “(default package)” within src, delete

the package … line at the beginning of the file and accept
Eclipse’s error fix to move it to the default package

