Understanding Definitions

For each of the following pairs of functions, indicate

whether f = O(g), f = (2(g), or f = O(g).

a. f(n) =3n+100,g9(n) = 10n — logn

b. f(n) = (log n)* + 5n log n.g(n) = 2n [pairB]
c f(n) =3n" +n3, g(n) =3" —bn® [pairC]

[pairA]

O gives an upper bound on a function's growth rate
Q gives a lower bound on a function's growth rate
© gives a tight bound on a function's growth rate

notation meaning

f(n) = O(g(n)) c g(n) is an upper bound on f(n)
f(n) = Q(g(n)) c g(n) is an lower bound on f(n)

f(n) = ©(g(n)) c, g(n) is an upper bound on f(n)
¢, g(n) is an lower bound on f(n)

definition

there exists ¢ > 0 and n, > 0 such that

f(n) < cg(n) foralln=n,

there exists ¢ > 0 and n, > 0 such that

f(n) 2 c g(n) for all n = n,

there exists ¢, > 0, ¢, > 0, and n, > 0

such that f(n) < ¢, g(n) and f(n) 2 ¢, g(N) =

foralln=n, A

6000 T T

10g(x)*log(x)45*x*l0g(x)
2%x

5000 -
4000

3000 -

2000 - /

(log n)? + 5n log n = Q(2n)

because
(log n)2 +5nlogn = 2n

1000 | _ | forc=1andn>5
,// [|
P S
o 50 100 150 200
60000
BHH2 x4 ——
Jereee
50000 -
3n2+n® = O(3"-5n°)
40000 -
because
30000 3n2+nd < C(3n_5n3)
20000 |- / 4| forc=landn>8
10000 |-) /
0 R -
-10000 L L L L
o 2 4 6 8

CPSC 327: Data Structures and Algorithms + Spring 2025

300

T 3
3x+100 ——
10%x-log(x) =

250

=T 1 | 3n+100 = O(10n-log n)
because

3n+100 < c(10n-log n)
forc=1and n>15

1600 T T T

9100 3n+100 = Q(10n-log n)

1400 0.25+10*x-log(x), i
because

1200 [// 1 3n+100 = ¢(10n-log n)

1000 F _— 1 forc=0.25and n >0
800 ////// 4

e i thus
— 3n+100 = ©(10n-log n)
- because
/ | 3n+100 < ¢,(10n-log n) and
. 00 00 o o o0 = 3n+100 = c,(10n-log n) for =

c,=1,¢,=0.25andn>15 «

CPSC 327: Data Structures and Algorithms + Spring 2025

0O, Q, © vs Best and Worst Cases

The big-Oh notation compares growth rates of functions —
comparing shapes of curves.
f(n) = O(g(n)) says that f(n) grows no faster than g(n)
g(n) is an upper bound on the growth rate
f(n) = Q(g(n)) says that f(n) grows no slower than g(n)
g(n) is a lower bound on the growth rate
f(n) = ©(g(n)) says that f(n) grows at the same rate as g(n)
g(n) is a tight bound on the growth rate

The best (or worst) case is the specific input instance that
yields the fastest (or slowest) running time over all possible
input instances of a given size — comparing the actual
number of steps required.

no input instance will take longer than the worst case for that
size, or take less time than the best case for that size

CPSC 327: Data Structures and Algorithms + Spring 2025 16

Understanding Terminology and Concepts

in all cases, the answer is “yes” — why?

If Alice proves that an algorithm takes O(n2) worst-
case time, is it possible that it takes O(n) time on
some inputs?

False o% |

True 8 respondents 100> | -

If Alice proves that an algorithm takes O(n2) worst-
case time, it is possible that it takes O(n) time on all
inputs?

True 2 respondents 755

P emontens 7% |

If Alice proves that an algorithm takes ©(n?) worst-
case time, is it possible that it takes O(n) time on
some inputs?

True 5 respondents 63%

False 3 respondents 38%

0O, Q, or ©?

give as tight as bound as possible

use @ if you can
e.g. mergesort is ©(n log n)

worst-case means nothing is
slower, but faster is possible
e.g. insertion sort

O is an upper bound, so f(n) =
O(n?) says that f(n) doesn't grow
any faster than n?, but it doesn't
preclude it growing slower i.e. n =
O(n?) though typically we want to
give the tightest bound we can

© means that the worst case
won't actually turn out to be better
than n?, but the worst case is the
slowest input of a given size and
others (e.g. best case) may be
better

0O, Q, © vs Best and Worst Cases

Saying that the worst-case behavior is O(n?) means —

some inputs could be O(n) because the worst case is the
slowest instance for a given size

all inputs could be O(n) because n grows no faster than n?,
though one generally tries to give the tightest O possible

Saying that the worst-case behavior is ®(n?) means —

some inputs could be O(n) because the worst case is the
slowest instance for a given size

not all inputs could be O(n) because then the worst case
instances would also be O(n) and n does not grow at the same
rate as n?

CPSC 327: Data Structures and Algorithms + Spring 2025 18

Implications for Algorithm Design

(©) fast computer 1000x faster
1 n is irrelevant n is irrelevant
logn anynis fine any n is fine

e.g. insertion sort is best case ©(n) and worst case ©(n?)

can use O if best case running time grows more slowly
than the worst case (or Q if worst case running time
grows faster than the best case) but you don't want to
distinguish — only worst (or best) case is important

e.g. insertion sort is O(n?)

e.g. insertion sort is Q(n)

can use O (or Q) if you can't establish a tight bound

you don’t know if the best case is better or if the worst case is
worse

CPSC 327: Data Structures and Algorithms + Spring 2025 19

n still practical for n =
n |og n 1,000,000

usable up to n = 10,000

2" impractical for n > 40
n! useless for n = 20

CPSC 327: Data Structures and Algorithms + Spring 2025

hopeless for n > 1,000,000

still practical for n =
1,000,000,000

usable up to n = 300,000
hopeless for n > 30,000,000

impractical for n > 50
useless for n = 22

20

— —togtx =
g 7 X"'DE(X);
15 - 7 |
(20%x
|
b] © fast computer
| 1 nisirrelevant
| 1| [logn any nis fine

0 L

.
o 1x107 2x107 3x107 4x107 5x107 6x107 7x107 8x107 9x107 1x10f|

T
1.4x107 -

1x10°

T
P —

1.2¢107 [-

1x107 [

1
1og(x)
X

*og(x) g

i

8x10° |

6x10° |-

4x10°

2x10° |-

still practical

forn=
nlogn ;1 500,000

0
0100000 200000 300000 400000 500000 600000 700000 800000 S00000 X100

CPSC 327: Data Structures and Algorithms + Spring 2025

Implications for Algorithm Design

running time on fast

© computer
1 n is irrelevant
logn anynis fine
n
still practical for
n = 1,000,000
nlogn
n? usable up to n = 10,000
hopeless for n > 1,000,000
n3
2" impractical for n > 40
n! useless for n = 20

characteristics of typical
tasks with the specified
running time

examine only a fixed number of
things regardless of input size

repeatedly eliminate a fraction of
the search space

examine each object a fixed
number of times

divide-and-conquer with linear
time per step
mergesort, quicksort

examine all pairs
insertion sort, selection sort

examine all triples
enumerate all subsets
enumerate all permutations

log(x)
il Rt still practical for
20 _
oo | |/ |'nlogn n=1,000,000
; usable upton =
ax107 | B
, 10,000
a0’ |- i hopeless for n >
1,000,000
° o 10(;000 20(;000 30(;000 40(;000 50(;000 60(;000 70(;000 BO(;OOD 90(;000 1x10°|
1x108 T T T T T T T
| log(x)
8x107 | “ x"lugix); B
| | r— impractical for n >
/ 40
a0 . n! useless for n =20
| /
|
2x107 | / B
“ /
0 I I I ,«f/ I I I
5 10 15 20 25 30 35 e

CPSC 327: Data Structures and Algorithms + Spring 2025

B

use the table on the
previous slide

ig-Oh From Algorithms

An array contains each of the numbers 1..n plus one duplicate

value. Which value is duplicated?

* Algorithm A uses quicksort or mergsort to sort all of the

s Algorithm B makes one pass through the array to sum the

CPS

sort, then examine each
object a fixed number of
times -» ©(n log n) + ©(n)
= 0(n log n)

numbers, then makes one pass through the array looking
for adjacent slots with the same value.

i1} examine each object a
numbers, then uses the formula T to calculate the g fixed number of times,
then examine only a fixed
number of things - ©(n)
+ 0(1) = O(n)

sum of the numbers 1..n and subtracts that from the sum

of the array's value.

Algorithm C makes one pass

through the array and for each value, makes a pass . X
for each object, examine

each object a fixed
number of times - ©(n) x
O(n) = 0(n?)

through the rest of the array to see if another copy of that
value is found i.e. each value in the array is compared to
each other value to find the duplicate.

C 327: Data Structures and Algorithms + Spring 2025

B A @

n lgn n nlgn n P
10 0.003 pus 00T ps s 0.1 ps 1 ps
20 0.004 ps 0.02 us 0.08G us 0.4 pus 1 ms ATS

30 0.005 ps 003 ps 0.147 ps 0.9 ps 1 sec 8.4 % 10 yrs
10 0.005 ps 004 ps 0.213 ps 1.6 pus 18.3 min
50 0.006 ps 0.05 us 0.282 ps 2.5 ps 13 days
100 0.007 ps 0.1 ps 0.644 ps 10 us 1% 107 yrs
1,000 0.010 ps 1.00 ps 9.966 s 1 ms

10,000 0.013 ps 10 ps 130 ps 100 ms
100000 0.017 s 010 ms 1.67 ms 10 sec
1,000,000 0.020 ps 1 ms 19.93 ms 16.7 min
10,000,000 0.023 ps 0.01 sec 0.23 sec 1.16 days
L00.000.000 0.027 ps 010 sec 2.66 sec 1156.7 days
1,000,000,000 0.030 ps 1 sec 29.90 sec 31.7 years

suitability for n = 25, 2500, 250,000, 250,000,000

CPSC 327: Data Structures and Algorithms + Spring 2025 27

Questions

O(n log n) is pretty practical — why couldn’t you just use
mergesort or quicksort for a very large array?

examine each object a fixed

n "
still practical for n_ur_nber Cines) e
n = 1.000.000 divide-and-conquer with linear
nlogn T time per step

mergesort, quicksort

* real systems have only a limited amount of memory
if the array is too large to fit into memory, it is kept on disk and
parts are swapped into memory when needed
« if successive accesses are scattered throughout the
array, the system spends all of its CPU time swapping
things in and out of memory instead of actually sorting
the assumption that each memory access is one time step also
breaks down
» need algorithms exhibiting locality of access to minimize
swaps

Questions

How do you choose between multiple algorithms with
suitable big-Ohs?

examine each object a fixed

n "
still practical for n_uljnber ctjimes —
n = 1,000,000 divide-and-conquer with linear
nlogn time per step

mergesort, quicksort

5 usable up to n = 10,000 examine all pairs
hopeless for n > 1,000,000 insertion sort, selection sort

+ if n = 1,000, all three of these are potentially suitable

+ consider other factors
is there already a library implementation?

if you have to implement something, which is simpler to
implement (and implement correctly)?

are there significant differences in memory usage?

CPSC 327: Data Structures and Algorithms + Spring 2025 28

