Implications for Algorithm Design

running time on fast

characteristics of typical

Big-Oh From Algorithms

An array contains each of the numbers 1..n plus one duplicate

value. Which value is duplicated?

* Algorithm A uses quicksort or mergsort to sort all of the
numbers, then makes one pass through the array looking

for adjacent slots with the same value.

numbers, then uses the formula

Algorithm B makes one pass through the array to sum the
n(n—1)

to calculate the

sum of the numbers 1..n and subtracts that from the sum

of the array's value.

Algorithm C

makes one pass

through the array and for each value, makes a pass
through the rest of the array to see if another copy of that
value is found i.e. each value in the array is compared to

each other value to find the duplicate.

CPSC 327: Data Structures and Algorithms + Spring 2025

Questions

(S) computer tasks_ WItI_1 the specified
running time
P examine only a fixed number of
1 n is irrelevant) g :
things regardless of input size
P repeatedly eliminate a fraction of
logn anynis fin
o9 Elngy) (SIS the search space
- examine each object a fixed
. . number of times
still practical for divid d ith [
n = 1,000,000 livide-and-conquer with linear
nlogn time per step
mergesort, quicksort
n? usable up to n = 10,000 examine all pairs
hopeless for n > 1,000,000 insertion sort, selection sort
n? examine all triples
2" impractical for n > 40 enumerate all subsets
n! useless for n = 20 enumerate all permutations
B A C
n lgn n ne B !
10 0.003 ps 001 ps 0.1 ps 1 ps 3.63 ms
20 0.004 us 0.02 us 0. s 0.4 pus 1 ms 77.1 years
30 0.005 ps 003 ps 0.147 pus 0.9 pus 1 sec 8.4 % 107 yrs
10 0.005 ps L 0.213 pus 1.6 us 18.3 min
50 0.006 ps 0.05 ps 0.282 us 2.5 ps 13 days
100 0.007 ps 01 ps 0.644 ps 10 us 4% 10™ yrs
1,000 0.010 ps 1.00 us 9.966 us 1 ms
10.000 0.013 us 10 ps 130 ps 100 ms
100000 0.017 s 0.10 ms 1.67 ms 10 sec
1,000,000 0.020 us 1 ms 19.93 ms 16.7 min
10.000,000 0.023 ps 001 sec 3 1.16 days
L00.000.000 0.027 ps 010 sec £ days
1,000,000,000 0.030 us 1 sec 29.90 sec 31.7 years

suitability for n = 25, 2500, 250,000, 250,000,000

CPSC 327: Data Structures and Algorithms + Spring 2025

use the table on the
previous slide

sort, then examine each
object a fixed number of
times - ©(n log n) + ©(n)
= 0(n log n)

examine each object a
fixed number of times,
then examine only a fixed
number of things - ©(n)
+ 0(1) = O(n)

for each object, examine
each object a fixed
number of times - O(n) x
O(n) = 0(n?)

How do you choose between multiple algorithms with

suitable big-Ohs?

n
still practical for

n = 1,000,000
nlogn

= usable up to n = 10,000

examine each object a fixed
number of times
divide-and-conquer with linear
time per step

mergesort,
examine all pairs

quicksort

hopeless for n > 1,000,000 insertion sort, selection sort

+ if n = 1,000, all three of these are potentially suitable

» consider other factors

is there already a library implementation?

if you have to implement something, which is simpler to
implement (and implement correctly)?

are there significant differences in memory usage?

CPSC 327: Data Structures and Algorithms + Spring 2025

Questions

O(n log n) is pretty practical — why couldn’t you just use
mergesort or quicksort for a very large array?

n

nlogn

still practical for
n = 1,000,000

examine each object a fixed
number of times
divide-and-conquer with linear
time per step

mergesort, quicksort

* real systems have only a limited amount of memory
if the array is too large to fit into memory, it is kept on disk and
parts are swapped into memory when needed
* if successive accesses are scattered throughout the
array, the system spends all of its CPU time swapping
things in and out of memory instead of actually sorting

the assumption that each memory access is one time step also
breaks down

» need algorithms exhibiting locality of access to minimize

swaps

The following table outlines the few easy rules with which you will be able to compute
(31, fi) for functions with the basic form f(r) = ©(b*" - n¢ - log® n). (We consider
= more general functions at the end of this section.)

Key Points

* the running time of a series of simple operations is ©(1)

« the running time of a loop is the sum of the time taken by
each iteration

if the time is the same for each iteration, the total time reduces to

the number of repetitions times the time per iteration

* the running time of a recursive function is expressed with
a recurrence relation

* logs and exponents come into play when something is
repeatedly divided or multiplied

CPSC 327: Data Structures and Algorithms + Spring 2025

Big-Oh for Sums

Use the big-Oh for sums table to find the © approximation

for the sum » 7" | ¢ log .

b | d e Type of Sum =, f() | Examples
> 1[Any |Any| GeometricIncrease | ©(f(n)) yo22 ml.2®
(dominated by ¥, =emm
last term) T2 —een
=1/ > —1] Any || Arithmetic-like an- fln) | L, ¢ = B(n-n?) =@n)
(halfof_termsi TR =0n-r)=0n)
e TEi o —en-m =0
Yh 1 =8Hm-1)=6Mm
Yhiaw =00 gy =0m")
=—1|=0 || Harmonic ©(n n) i % =log,(n) + ©(1)
< —1 | Any || Bounded tail e Tiime =6(1)
(dominated by T _
first term) O
=1 Any |Any YLOF =em
T =8

CPSC 327: Data Structures and Algorithms + Spring 2025

from Jeff Edmonds, How to Think About Algorithms 32

2. [W] Give the © approximation for each of the following sums. Use the big-Oh for sums
table.

a. %i=1.n (Iog.i)
b. Zi=1.n (1/2)

C. Zi=1.log n (N i2)
d. Zi=1.n Zj=1..2 (ij log i)

CPSC 327: Data Structures and Algorithms + Spring 2025

sort(arr) Exponent Rules
Big-Oh From Algorithms . Assume that a and b re nonzero eal Log Rules
for i « 0..n-2 = numbers, and m and n are any integers. e
if arr[i] == arr[i+l1] 1) Zero Property of Exponent
An array contains each of the numbers 1..n plus one duplic d up « arr [l] 0 definition of |og:
lue. Which value is duplicated? b:1 H
value ich value is duplicate break if x = |Ogb(n) then n = bx
« Algorithm A uses quicksort or mergsort to sort all of the 2) Negative Property of Exponent
numbers, then makes one pass through the array looking b= L OR 1 =" Rule: log, (M-N) =log, M+log, N
for adjacent slots with the same value. 4 b M
« Algorithm B makes one pass through the array to sum the sum « 0 3) Product Property of Exponent Rule2: logy, (i) =log, M—log, N
numbers, then uses the formula m‘nz_l‘l to calculate the for i « 0..n-1 (b"’)(b") = pmt b'"?=Vb K
sum of the numbers 1..n and subtracts that from the sum sum += arr [i] Rile3: log, (M) =k-log, M
4) Quotient Property of Exponent
of the array’s value. dup - Sum_n(n_l)/z B Ruled: '09:,(")=0
« Algorithm C _ makes one pass E =p"" Rule5: log, (b) =1
through the array and for each value, makes a pass 5) Power of a Power Property of Exponent Kk
through the rest of the array to see if another copy of that n Ruee: log, (l7) =k
wvalue is found i.e. each value in the array is compared to (bm) = b”m Rule7: b'ﬂab(k) —k
each other value to find the duplicate. g
f or 1 « 0 ..n-1 6) Power of a Product Property of Exponent Where: b>1,and M, N and k can be any real numbers
o . m
for J & l+1 ..n-1 . (ab) = ambm but M and N must be positive!
i f aiin [i] - . any [J] 7) Power of a Quotient Property of Exponent I ()
dup « arr[j] [ajm " logb(X)=1°g"(Z) o
| — N = 0g, —
CPSC 327: Data Structures and Algorithms + Spring 2025 b rea k b " 35
Logarithms and Exponents Solving Recurrence Relations

For the following pairs of functions, indicate whether f=0(g),

=0(g), or F=O1(g). T(n) = a T(n-b) + f(n) where f(n) = ©(n° log® n)

+ f(n) =logn? g(n) = 2"°*" [pairal Cases are based on the number of subproblems and f(n).
e f(n) =log;yn.g(n) = 10n [pairB]
s f(n) =log,yn.g(n) = log, 2n [pairC]

a f(n) behavior solution

. base case dominates _ b

* tips (too many leaves) T(n) = ©(a™)
know the growth rate ordering of common functions: 1, log n, n, 1 =1 alllevels are important T(n) = ©(n f(n))
nlog n, n? 2", n!
simplify other functions to make them more familiar

>1 any

CPSC 327: Data Structures and Algorithms + Spring 2025 36 CPSC 327: Data Structures and Algorithms « Spring 2025

Solving Recurrence Relations Big-Oh for Recurrence Relations

T(n) —a T(n/b) o f(n) where f(n) = e(nc |Ogd n) Use the big-Oh for recurrence relations tables to find the ©
approximation for the recurrence relation
. .) — n =Xe
Cases are based on the relationship between the number of T(n) = 3T (§) +©(n).
subproblems, the problem size, and f(n).
(log
g;/g:% d behavior solution T(n) = 2T(n/2) + O(log n)
top level dominates — more work T(n) = 3T(n/9) + O(n)
< any splitting/combining than in subproblems T(n) = ©(f(n)) —
(root too expensive) T(n) = 8T(n/2) + O(n?)
all levels are important - log n steps to T(n) = T(n-1) + ©(1)
= > -1 get to base case, and roughly same T(n) = ©(f(n) log n)
amount of work in each level
= < -1 base cases dominate - so many
subproblems that taking care of all the _ (log a)/(log b)
> any base cases is more work than T(n) = ©(n™2=%) =
S Eno/combinTnoj(teolin=nvilcayes) o PSC 327:Daa Swucures and Agorfms + Spring 2025 w©

The Limits of Asymptotic Complexity

big-Oh provides a useful but big picture view
allows comparing algorithms rather than programs
can determine if an algorithm is fast enough to be practical

big-Oh is not suitable for “which is faster?” comparisons
between algorithms whose running times belong to the
same growth rate class

specific implementation details, constant factors, and lower-order
terms matter

ways in which real systems differ from the RAM model matter

actual performance depends on the specific inputs typical for the
application

CPSC 327: Data Structures and Algorithms + Spring 2025 a0

