

CPSC 327: Data Structures and Algorithms • Spring 2025 46

Binary Tree ADT

Why (proper) binary trees?

• binary trees are a very common type of tree

• proper simplifies the implementation and is not limiting
– in a proper binary tree, every non-leaf node has exactly two

children
– can have dummy leaves (no element is stored there)

• BinaryTree ADT / implementation ideas can easily be
extended to general trees

• can implement general trees in terms of binary trees

CPSC 327: Data Structures and Algorithms • Spring 2025 47

BinaryTree ADT

• standard operations of any class
– constructor – create a one-node tree

• standard operations for containers
– size(), isEmpty()

• structural accessors
– getRoot(), getParent(node), getLeftChild(node),

getRightChild(node), sibling(node)
– isRoot(node), isLeaf(node), isInternal(node)

• manipulating elements
– setElement(node,elt), swapElements(node1,node2)

• structural mutators
– expandLeaf(node), removeAboveLeaf(node)

Note: this is representative of the concept –
particular operations, names, parameters
may vary.

CPSC 327: Data Structures and Algorithms • Spring 2025 48

BinaryTree ADT

• expandLeaf(node) • removeAboveLeaf(node)

follow with setElement(node,elt) to store
an element in the new internal node

removes the leaf node and its parent
CPSC 327: Data Structures and Algorithms • Spring 2025 49

Working With Trees

CPSC 327: Data Structures and Algorithms • Spring 2025 50

Working With Trees

CPSC 327: Data Structures and Algorithms • Spring 2025 51

Working With Trees – Patterns

Three main ways of moving through trees:

• moving up the tree
– loop with current node being updated to parent until the root is

reached

• moving down the tree, interested in only one child
– loop with current node being updated to child until leaf is

reached

• moving down the tree, interested in both children
– recursion (left child and right child), with leaf as base case

(note – these are general patterns; modify specifics like
starting or ending point as needed for a particular task)

CPSC 327: Data Structures and Algorithms • Spring 2025 52

Working With Trees – Patterns

• moving up the tree
– loop with current node being updated to parent until the root is reached

node

CPSC 327: Data Structures and Algorithms • Spring 2025 53

Working With Trees – Patterns

• moving down the tree, interested in only one child
– loop with current node being updated to child until leaf is reached

node

CPSC 327: Data Structures and Algorithms • Spring 2025 54

Working With Trees – Patterns

• moving down the tree, interested in both children
– recursion (left child and right child), with leaf as base case

node

CPSC 327: Data Structures and Algorithms • Spring 2025 55

Working With Trees – Patterns

node

CPSC 327: Data Structures and Algorithms • Spring 2025 56

Working With Trees – Patterns

node

CPSC 327: Data Structures and Algorithms • Spring 2025 57

Working With Trees – Patterns

CPSC 327: Data Structures and Algorithms • Spring 2025 58

Working With Trees – Patterns

• moving down the tree, interested in both children
– recursion (left child and right child), with leaf as base case

CPSC 327: Data Structures and Algorithms • Spring 2025 59

Working With Trees – Patterns

Three main ways of traversing trees:
• preorder – visit node before children
• inorder – visit node between children
• postorder – visit node after children

All three traversals are special cases
of an Euler tour.

– visit, left, visit, right, visit

* / + 5 z – 8 3 ^ 4 2

5 + z / 8 – 3 * 4 ^ 2

5 z + 8 3 - / 4 2 ^ *

(((5 + z) / (8 – 3)) * (4 ^ 2))

print (on first visit,) on third for internal
nodes

3

CPSC 327: Data Structures and Algorithms • Spring 2025 60

Implementing BinaryTree – TreeNode

10

operation linked structure

instance variables ● element, parent, left child,
right child

getElement() O(1) – return element

CPSC 327: Data Structures and Algorithms • Spring 2025 61

Implementing BinaryTree

operation linked structure

instance variables ● root, size

size() Th(1) – return size

isEmpty() Th(1) – return size == 0

getParent(node)
getLeftChild(node)
getRightChild(node)

Th(1) – return value of instance
variable in the node

expandLeaf(node) Th(1) – create two new nodes,
update links, size += 2

removeAboveLeaf(node) Th(1) – relink grandparent to
sibling, size -= 2

setElement(node,elt) Th(1) – change instance var in
node

swapElements(node1,node2) Th(1) – essentially 2 setElements

10

20 50

30

40

90
80

70
60

(parent pointers
not shown)

