Basic Implementation of Dictionary/Map

We need some kind of collection to hold the keys/elements
in the map.

There are two basic collections
© array
* linked list

and two basic ways elements can be ordered within those
collections

* not sorted
- sorted

CPSC 327: Data Structures and Algorithms + Spring 2025 25

Constant-Time Deletion in an Unsorted Array

(of2fsfefef3f2]e

* O(1) deletion

swap element to be deleted with the last element, then remove
the (new) last element

CPSC 327: Data Structures and Algorithms + Spring 2025 27

Basic Implementation of Map/Dictionary

Unsorted Sorted Singly linked Dounbly linked
Dictionary operation array array unsorted sorted unsorted sorted
Search(A, k) O(n) O(logn) [| Ofn) Ofn] On) Ofn)
Insert(A, x) o(1) O(n) o) Q(n) O(1) Qin)
Delete(A, @) orpeleteak) | O(1)* O(n) 0o(1) * 0o(1) * (1) 1)
(given location of x)
Remove(A,x) orRemove(Ak) O(n) O(n) O(n) o(n) o(n) o(n)

(not given location of x) requires search + delete

A is the dictionary, k is a key, x is a key-value pair (k,v)

delete operation as defined in ADM assumes that the element is
already found (known array index, pointer to the linked list node) —
otherwise find operation is required first

* denotes cleverness or subtlety

CPSC 327: Data Structures and Algorithms + Spring 2025 26

Constant-Time Deletion in a Singly-Linked List

X

|
e B e B = e B I

* O(1) deletion

x.setValue(x.getNext().getValue())
x.setNext (x.getNext().getNext())

CPSC 327: Data Structures and Algorithms + Spring 2025 2

Basic Implementation of PriorityQueue

We need some kind of collection to hold the keys/elements
in the PQ.

There are two basic collections

array

linked list
and two basic ways elements can be ordered within those
collections

not sorted
sorted

CPSC 327: Data Structures and Algorithms + Spring 2025

Basic Implementation of PriorityQueue

. array - linked list - linked list -
operation \\nsorted 2TV~ S unsorted sorted
: . O(n) — ; O(1) —at
find min search O(1) —inslot0 O(n) — search head
. O(1)—add O(n)—binary O(1)—addat _°M-
liES1 at end search + shift head sequential
search
O(n) -
remove] O(n) —search O(1) —at
: search + O(n) — shift
mn - elete (swap) + delete head

Can we avoid (some) searching and shifting?
— store min location (update on insert, remove)
— circular array or reverse sorted array

CPSC 327: Data Structures and Algorithms + Spring 2025

Basic Implementation of PriorityQueue

CPSC 327: Data Structures and Algorithms + Spring 2025

. array -) linked list - linked list -
operation unsorted 2"y sorted unsorted sorted
find min

insert

remove

min

Basic Implementation of PriorityQueue

CPSC 327: Data Structures and Algorithms + Spring 2025

oneration array - array — linked list - linked list -
= unsorted reverse sorted unsorted sorted
find min O(1) —store O(1)—inlast O(1) —store O(1)—at
index of min slot node with min head
. O(n) —
: O(1) —add O(n)—binary 0O(1)—add at :
LSS at end search + shift head sequential
search
e o()-inl om-_ on)
remove delete (swap) —in last " —at
min + update slot updna(.)tgemln head
min index

Tradeoff: fast insert or fast remove, but not both.
Can we do better?

