

CPSC 327: Data Structures and Algorithms • Spring 2025 63

Implementing Map

• can store (key,value) pairs in a binary search tree ordered
by key
– let h be the height of the tree
– all operations are O(h) as it may be necessary to go from the

root all the way down to a leaf

O(1) * O(1) *

Remove(A,x)
 (not given location of x)

(given location of x)

O(n) O(n) O(n) O(n) O(h)

requires search + delete

or Delete(A,k)

or Remove(A,k)

BST

O(h) – root to leaf

O(h) – search + add node

O(h) – may need to find
successor + swap, remove
node

CPSC 327: Data Structures and Algorithms • Spring 2025 64

BST Height

• height of a binary search tree
– best case is O(log n)
– worst case is O(n)

• whether a BST of a given size is balanced
(O(log n) height) or unbalanced (O(n)
height) depends on the order of insertions
and removals, not the elements in the tree

• can we do better?
– try to keep the tree balanced...

CPSC 327: Data Structures and Algorithms • Spring 2025 65

AVL Trees

• invented by Georgy Adelson-Velsky and
Evgenii Landis in 1962

• first known balanced BST data structure

An AVL tree is a BST + a height balance property:
• for every node, the height of the node's left subtree is no

more than one different from the height of the node's right
subtree

The height balance property ensures that the height of an
AVL tree with n nodes is O(log n).

CPSC 327: Data Structures and Algorithms • Spring 2025 66

Height of AVL Trees

Let N(h) be the minimum number of nodes in an AVL tree of
height h.

– a tree with the minimum number of nodes for its height is also
the tallest possible for that number of nodes

Then
– N(h) = 1+N(h-1)+N(h-2)

• one child must have height h-1 in
order for the whole tree to have
height h, and N(h-1) is the minimum
number of nodes that subtree can have

• the other child's height can be no more
than one different, so it can't have
height less than h-2, and N(h-2) is the
minimum number of nodes that subtree
can have

• +1 for the root

– N(1) = 1, N(2) = 2
• can't have fewer than one node per level of the tree

http://www.cs.emory.edu/~cheung/Courses/253/
Syllabus/Trees/AVL-height.html

CPSC 327: Data Structures and Algorithms • Spring 2025 67

Height of AVL Trees

• N(h) = 1+N(h-1)+N(h-2) ≤ 1+2N(h-1)

N(h) = O(2h)
 → h = log(N(h))

CPSC 327: Data Structures and Algorithms • Spring 2025 69

Operations on AVL Trees

An AVL tree is a BST, so the find operation is no different.

For insert and remove:

• insert/remove as dictated by the (BST) structural and
ordering rules

• fix up the broken balance property as needed

CPSC 327: Data Structures and Algorithms • Spring 2025 70

Insert

• structural property dictates that insertion only occurs at a
leaf

• ordering property dictates where

insert 20

no height-balance violations – we're done!

insert 5

height-balance property violated – uh oh!

20

5

9

9

CPSC 327: Data Structures and Algorithms • Spring 2025 71

Remove

• structural property dictates that removal only occurs
above a leaf
– may need to swap desired element with next larger/smaller in

order to satisfy the structural property

remove 3

swap with 4 and remove
no height-balance violations –
we're done!

remove 9

height-balance property
violated – uh oh!

9

9

9

4

CPSC 327: Data Structures and Algorithms • Spring 2025 72

Restructuring

Both insertion and deletion may break the height balance
property.

Restore it by performing one or more restructuring
operations (or rotations).

CPSC 327: Data Structures and Algorithms • Spring 2025 73

Restructuring

5

9

let z be the first unbalanced node (working up the
tree from the point of insertion/deletion)

let y be z's tallest child

let x be y's tallest child

5

9

relabel x, y, z as a, b, c according to their correct
sorted order

label the other subtree children of a, b, c as T1,
T2, T3, T4 according to their correct sorted order

z

y

x

a

c

b

T1

T2
T3

T4

rearrange as shown:

b

a c

T1 T2 T3 T4

CPSC 327: Data Structures and Algorithms • Spring 2025 74

Restructuring

5

9

a

c

b

T1

T2
T3

T4

rearrange as shown:

b

a c

T1 T2 T3 T4

9

4

3 6

5 71

height balance property restored!

CPSC 327: Data Structures and Algorithms • Spring 2025 75

Restructuring

How many restructuring operations are needed?

Observation.
• restructuring reduces the height

of a subtree

Insertion –
• insertion increases the height of a subtree, so one

restructuring is sufficient to shorten it and restore balance

Removal –
• removal decreases the height of a subtree, so one

restructuring may result in only pushing the imbalance
higher up the tree

• O(log n) restructurings may be required

CPSC 327: Data Structures and Algorithms • Spring 2025 76

Insert Examples

– insert/remove as normal for a BST, then fix the balance property if broken

– must check from the inserted/removed node back up to the root to find
unbalanced nodes – what becomes unbalanced might not be directly above
the new/removed node

– at most one restructuring needed for insertion, but have to check the whole
removed node to root path for removal (may need multiple restructurings)

insert 65

insert 20 insert 55

CPSC 327: Data Structures and Algorithms • Spring 2025 77

Delete Examples

– insert/remove as normal for a BST, then fix the balance property if broken

– must check from the inserted/removed node back up to the root to find
unbalanced nodes – what becomes unbalanced might not be directly above
the new/removed node

– at most one restructuring needed for insertion, but have to check the whole
removed node to root path for removal (may need multiple restructurings)

delete 20
delete 20

delete 50

swap with successor

CPSC 327: Data Structures and Algorithms • Spring 2025 79

Running Time

• initial BST insert/remove – O(log n)
• number of nodes to check for balance – O(log n)
• time to perform a balance check – O(1) if height info is stored for

each node
• time to perform one restructuring – O(1)
• number of restructurings performed – 1 for insertion, O(log n) for

removal
• time to update stored balance information – O(log n) nodes

affected, O(1) per

O(1) * O(1) *

Remove(A,x)
 (not given location of x)

(given location of x)

O(n) O(n) O(n) O(n) O(log n)

requires search + delete

or Delete(A,k)

or Remove(A,k)

balanced BST

O(log n)

O(log n)

O(log n)

Total time: O(log n) for insert/remove

CPSC 327: Data Structures and Algorithms • Spring 2025 80

Implementation

public class AVLTree {

 private TreeNode root_;

 class TreeNode {
 private TreeNode parent_;
 private TreeNode left_, right_;
 private int value_;
 }

}

10

20 50

30

40

9080

70
60

(parent pointers
not shown)

root_

