Splay Trees Takeaways

another form of restructuring operation

randomized or heuristic approaches can result in good
performance in practice because worst case scenarios
are rare

the notion of amortized analysis

an average based on the performance over a series of
operations

CPSC 327: Data Structures and Algorithms + Spring 2025 107

Comparison

frequently-accessed elements are near the root in splay
trees, resulting in faster access

advantageous in applications where there is locality of reference
— repeated access of related storage locations

AVL trees are more tightly balanced than red-black trees,
so faster retrieval but slower insertion and removal
“tightly balanced” — smaller height

AVL trees are good for applications where trees are built once
but searched often

CPSC 327: Data Structures and Algorithms + Spring 2025 109

Comparison

AVL trees and splay trees achieve O(log n) height by
keeping the subtrees from getting too uneven.

2-4 trees and red-black trees achieve O(log n) height by
constraining the maximum depth of any element.

AVL trees, 2-4 trees, and red-black trees all have worst-

case O(log n) operations

splay trees have amortized O(log n) operations, with
worst-case O(n) behavior

CPSC 327: Data Structures and Algorithms + Spring 2025 108

Comparison

splay trees have the simplest implementation

just BST + restructuring operation — no additional information to
store/maintain

red-black trees are more commonly used than 2-4 trees
easily built on top of binary trees — just need to store a color bit
simpler to implement than 2-4 trees

'find' may restructure a splay tree

from a design perspective, having read-only operations change
structure is undesirable

a consequence is that splay trees are not thread-safe for
concurrent finds without extra bookkeeping

CPSC 327: Data Structures and Algorithms + Spring 2025 110



Designing Data Structures

Studying balanced search trees reveals two tactics:

it can be effective to add additional properties to the
organization of the elements stored in order to improve
runtime of an operation

e.g. AVL trees, 2-4 trees, red-black trees

it can be effective (though harder to analyze) to piggyback
local optimizations on other operations
e.g. splay trees

In both cases, it is essential that the additional work does
not overwhelm the savings gained.

CPSC 327: Data Structures and Algorithms + Spring 2025 111



