

CPSC 327: Data Structures and Algorithms • Spring 2025 134

Heaps – Implementation

Arrays are the traditional implementation for heaps.
– same big-Oh as linked structure, but avoids space overhead of

parent/child pointers

Running time:

• insert – O(log n)
– O(1) to put element in array, update last
– O(log n) to bubble up

• remove min – O(log n)
– O(1) to swap with last, remove last, update last
– O(log n) to bubble down

• find min – O(1)
– min element is at root (index 0)

CPSC 327: Data Structures and Algorithms • Spring 2025 135

Heaps – Implementation

We didn't improve the big-Oh over the balanced search tree
implementation for PQs.

But –

• reduced storage overhead (no parent, child pointers)

• reduced difficulty of implementation
– array + bubble up, bubble down vs. linked structure + balanced

search tree operations
– traded maintaining 'min' reference for

incrementing/decrementing 'last' index

• reduced constant factors
– traded O(log n) maintenance of 'min' reference for O(1)

maintenance of 'last' index

CPSC 327: Data Structures and Algorithms • Spring 2025 136

Building a Heap

How to build a heap?

• repeatedly insert each element = Θ(n log n) ∑
i=0

n−1

log(i)

CPSC 327: Data Structures and Algorithms • Spring 2025 137

Building a Heap

Or...if you already have an array of elements...
• for any n elements in an array, the heap order property is

at most broken only for the first n/2 elements

Heapify idea.
• for each index n/2 down to 0, bubble down that element

Running time.
• bubble down takes O(h) time

– n/2 elements are leaves (already in place – no change)
– n/4 elements are one level above leaf (at most 1 swap)
– n/8 elements are two levels above leaf (at most 2 swaps)
– …

• = = n Θ(1) = Θ(n)∑
i=1

log n

(i−1)(
n
2i

)

