Map/Dictionary Implementation Recap

Unsorted Sorted Singly linked balanced hashtable
Dictionary operation | | array array nnsorted sorted BST
Search(A, k) O(n) O(logn) || On) On] O(logn) O(1) expected
Insert(A, z) 0(1) O(n) 01} Ofnl O(logn) O(1) expected
Delete(A, x) orDelete(ak) | O(1)* O(n) o(1) * o(1) * o(ogn) nia
(given location of x)
Remove(A,X) or Remove(Ak) O(n) o(n) o(n) O(n) O(logn) O(1) expected

(not given location of x) requires search + delete

CPSC 327: Data Structures and Algorithms + Spring 2025 160

Recap — ADTs

We've considered major categories of ADTs for collections,
characterized by the access they provide for their elements,
and commons ADTs within those categories

 containers — based on position, not element value
Sequence/List — linear structure with access at any position
Stack — insert/remove at the same end (top)
Queue — insert/remove at opposite ends (front, back)

« dictionary — based on element's key (lookup)
Dictionary/Map — find(k), insert(k,v), remove(k)
OrderedDictionary — also max/min, successor(k), predecessor(k)

* priority queue — ordered, based on element's key
PriorityQueue — insert(x), findMin (or max), removeMin (or max)

CPSC 327: Data Structures and Algorithms + Spring 2025 162

OrderedDictionary

Dictionary operation array array

Ordered Unsorted Sorted H Singly linked palanced hashiable
unsorted sorted BST

Search(A, k)

Insert(A, z)

Delete(A, r)

Successor(A, x)

Predecessor(A, x)

Minimum(A)

Maximum(A)

CPSC 327: Data Structures and Algorithms + Spring 2025 161

Recap — Data Structures

We've seen some useful data structures — arrays, linked
lists, binary trees, general trees.

We've seen some clever ways to use and adapt basic data
structures to achieve efficient implementations of ADTSs.
sorted array/linked list (vs. unsorted)
circular arrays
linked list with tail pointers
array-based implementation of binary trees

search trees (binary, multiway) — trees with ordering property for
elements

balanced search trees (AVL, 2-4) — search trees with structural
property to maintain log n height

hashtables — arrays with clever conversion of key to array index
heaps — trees with ordering + structural properties

CPSC 327: Data Structures and Algorithms + Spring 2025 163

Specialized Data Structures

Be aware that there's more out there.

¢ other implementations
dictionaries: splay trees, red-black trees, b-trees, skip lists
priority queues: bounded height PQs, Fibonacci heaps, pairing
heaps

* string data structures
e.g. suffix trees/arrays for pattern matching
e.g. prefix trees

* geometric data structures
e.g. BSP, kd-trees for fast searching in space

+ graph data structures
- set data structures

CPSC 327: Data Structures and Algorithms + Spring 2025 164

Match each of the following scenarios with the most appropriate data
structure used in its implementation

Match each of the following scenarios with the most appropriate data
structure used in its implementation.

Question

Map/Dictionary

uffix

to store configuration options and
their values for an application

managing

counting word frequency ina
document

asymbol table used by a compiler
to associate variable names with
their properties (type, scope,
memory location) during code
compilation

in a text adventure game,
resolving the name entered by the
user toits corresponding object
representation

managing processes or threads in
an operating system so that the
most important tasks are serviced
first

in best-first and A" search
algorithms, to explore the most
promising node first

in an event-driven simulation, to
ensure that scheduled events are
processed in the correct
chronological order

< < <
O O O I I I b

CPSC 327: Data Structures and Algorithms + Spring 2025

Match each of the following scenarios with the most appropriate data
structure used in its implementation

Question Map/Dictionary kd-trees set suffix trees/arrays priority queue

Question

Map/Dictionary

suffix trees/arrays

priority queue

in image recognition, storing
feature descriptors to accelerate
searches for similar image
patches

in robot navigation, determine the
nearest obstacles in order to plan
collision-free paths through an
environment

inGIS, to find alllocations (such as
restaurants or hospitals) within a 0
specific area

inray tracing (computer graphics),
finding the nearest object hit by a o
ray

in pattern recognition, speeding
up nearest-neighbor searches
when classifying handwritten
digits or facial recognition

keeping track of visited nodes
during search

storing a unique collection of
permissions or roles for a user
within a security context

removing duplicate email
addresses from a large collection
of email addresses

in plagiarism detection, to find the
longest substring appearingin
two or more other strings

building indexes for large text
databases

finding all occurrences of a
pattern or substring within a large
text

CPSC 327: Data Structures and Algorithms + Spring 2025 166

CPSC 327: Data Structures and Algorithms + Spring 2025

(mnpupore o tnang
o) | il g wtich

{uniquey arerea
/ = =
EDED
i

A Practical Guide to Data Structures and Algorithms
using Java, Goldman and Goldman

Algorithm Design

The Algorithm Design Manual, Skiena

CPSC 327: Data Structures and Algorithms + Spring 2025

