Choosing Data Structures

“Building algorithms around data structures such as
dictionaries and priority queues leads to both clean
structure and good performance.” [Skiena, ADM]

first design the ADT — identify how your collection is accessed
and what operations are needed

then choose an implementation that delivers the necessary
performance

isolate the implementation of the data structure from the rest of
the code

in Java, this means writing a class to implement the ADT with methods for
the ADT operations

CPSC 327: Data Structures and Algorithms + Spring 2025 201

Implementation Choices for Dictionaries

for small data sets, unsorted arrays are simple and have
better cache performance than linked lists
for moderate-to-large data sets, hashtables are likely best

for very large data sets where there isn’t enough room in
memory, use B-trees

self-organizing lists (move-to-front heuristic) are often better than
sorted or unsorted lists in practice

many applications have uneven access frequencies and locality of reference
sorted arrays OK if not too many insertions or deletions
the inability to use binary search makes sorted linked lists often not
worth it
for balanced search trees, the best choice is likely the one with the
best implementation

Skip lists are easier than balanced search trees to implement and
analyze

CPSC 327: Data Structures and Algorithms + Spring 2025 203

Choosing Implementations

Consider the characteristics of your task —
dictionaries

how many items? is the size known in advance?
if small, simplicity of implementation is most important
if very large, running out of memory is an issue

what are the relative frequencies of insert, delete, find
operations?
static (no modifications after construction) and semi-dynamic structures
(insertion but no deletion) can be simpler than fully dynamic

is the access pattern for keys uniform and random?
in some data structures, non-uniform distributions lead to worst-case
performance while others can take advantage of temporal locality
do individual operations need to be fast, or just minimize the total
amount of work of the whole program?

focus on achieving good worst case performance vs amortized or
expected performance

CPSC 327: Data Structures and Algorithms + Spring 2025 202

Implementation Choices for Dictionaries

creating good hashtables

open addressing has better cache performance, but overall
performance decreases quickly with higher load factors

with open addressing, N should be 30-50% larger than the
maximum number of elements expected at once
N should be prime

use a good hash function + an efficient implementation

|S|—1
H(S) = ol + Z 170+ o char(s;) (mod m)

i=0

gather stats on the distribution of keys to see how well the hash function
performs

CPSC 327: Data Structures and Algorithms + Spring 2025 204

Choosing Implementations

Consider the characteristics of your task —

priority queues

max size? is it known in advance?
preallocating the necessary space saves having to grow a container

are the key values limited?

what operations are needed?
if no insertion after construction, no need for PQ — just sort

other operations: searching for or removing arbitrary elements vs only the
min/max

can priorities of elements already in the PQ be changed?
implies needing to retrieve elements by key, not just the min/max ones

CPSC 327: Data Structures and Algorithms + Spring 2025 205

Designing Your Own Data Structures

know what kinds of structures lead to what kinds of
running times
can use that knowledge to guide/constrain thinking

O(n log n) or better is typically required in practice for large data
sets

strategies for rolling your own data structures

store more information for faster access — as long as it can be
kept up-to-date efficiently

add additional properties to speed desired operations — as long
as they can be maintained efficiently

knowledge of complexity is useful

for NP-complete problems, look for heuristics rather than optimal
solutions

CPSC 327: Data Structures and Algorithms + Spring 2025 207

Implementation Choices for Priority Queues

sorted array or list when there aren’t any insertions
very efficient for identifying and removing the smallest element

binary heaps when the max number of elements is known
fixed array size can be mitigated with dynamic arrays

bounded-height priority queues when there is a small,
discrete range of keys

BSTs when other dictionary operations are needed, or
when there is an unbounded key range and the max PQ
size isn’t known in advance

Fibonacci and pairing heaps improve the efficiency of
decrease key operations
effective for large computations if implemented and used well

CPSC 327: Data Structures and Algorithms + Spring 2025 206

Designing Data Structures

“...in practice, it is more important to avoid using a bad data
structure than to identify the single best option available.”
[Skiena, ADM]

ask “do we need to do better?” before “can we do better?”

CPSC 327: Data Structures and Algorithms + Spring 2025 208

Design a data structure to efficiently support —

¢ insert(k,e) — insert element with key k

« findMin() — find element with smallest key

* removeMin() — remove element with smallest key
« decreaseKey(e,k) — decrease element e's key to k

CPSC 327: Data Structures and Algorithms + Spring 2025

209

