

CPSC 327: Data Structures and Algorithms • Spring 2025 201

Choosing Data Structures

“Building algorithms around data structures such as
dictionaries and priority queues leads to both clean
structure and good performance.” [Skiena, ADM]

– first design the ADT – identify how your collection is accessed
and what operations are needed

– then choose an implementation that delivers the necessary
performance

– isolate the implementation of the data structure from the rest of
the code

• in Java, this means writing a class to implement the ADT with methods for
the ADT operations

CPSC 327: Data Structures and Algorithms • Spring 2025 202

Choosing Implementations

Consider the characteristics of your task –

• dictionaries

– how many items? is the size known in advance?
• if small, simplicity of implementation is most important
• if very large, running out of memory is an issue

– what are the relative frequencies of insert, delete, find
operations?

• static (no modifications after construction) and semi-dynamic structures
(insertion but no deletion) can be simpler than fully dynamic

– is the access pattern for keys uniform and random?
• in some data structures, non-uniform distributions lead to worst-case

performance while others can take advantage of temporal locality

– do individual operations need to be fast, or just minimize the total
amount of work of the whole program?

• focus on achieving good worst case performance vs amortized or
expected performance

CPSC 327: Data Structures and Algorithms • Spring 2025 203

Implementation Choices for Dictionaries

• for small data sets, unsorted arrays are simple and have
better cache performance than linked lists

• for moderate-to-large data sets, hashtables are likely best
• for very large data sets where there isn’t enough room in

memory, use B-trees

• self-organizing lists (move-to-front heuristic) are often better than
sorted or unsorted lists in practice
– many applications have uneven access frequencies and locality of reference

• sorted arrays OK if not too many insertions or deletions
• the inability to use binary search makes sorted linked lists often not

worth it

• for balanced search trees, the best choice is likely the one with the
best implementation

• skip lists are easier than balanced search trees to implement and
analyze

CPSC 327: Data Structures and Algorithms • Spring 2025 204

Implementation Choices for Dictionaries

• creating good hashtables

– open addressing has better cache performance, but overall
performance decreases quickly with higher load factors

– with open addressing, N should be 30-50% larger than the
maximum number of elements expected at once

• N should be prime

– use a good hash function + an efficient implementation

• gather stats on the distribution of keys to see how well the hash function
performs

CPSC 327: Data Structures and Algorithms • Spring 2025 205

Choosing Implementations

Consider the characteristics of your task –

• priority queues

– max size? is it known in advance?
• preallocating the necessary space saves having to grow a container

– are the key values limited?

– what operations are needed?
• if no insertion after construction, no need for PQ – just sort
• other operations: searching for or removing arbitrary elements vs only the

min/max

– can priorities of elements already in the PQ be changed?
• implies needing to retrieve elements by key, not just the min/max ones

CPSC 327: Data Structures and Algorithms • Spring 2025 206

Implementation Choices for Priority Queues

• sorted array or list when there aren’t any insertions
– very efficient for identifying and removing the smallest element

• binary heaps when the max number of elements is known
– fixed array size can be mitigated with dynamic arrays

• bounded-height priority queues when there is a small,
discrete range of keys

• BSTs when other dictionary operations are needed, or
when there is an unbounded key range and the max PQ
size isn’t known in advance

• Fibonacci and pairing heaps improve the efficiency of
decrease key operations
– effective for large computations if implemented and used well

CPSC 327: Data Structures and Algorithms • Spring 2025 207

Designing Your Own Data Structures

• know what kinds of structures lead to what kinds of
running times
– can use that knowledge to guide/constrain thinking
– O(n log n) or better is typically required in practice for large data

sets

• strategies for rolling your own data structures
– store more information for faster access – as long as it can be

kept up-to-date efficiently
– add additional properties to speed desired operations – as long

as they can be maintained efficiently

• knowledge of complexity is useful
– for NP-complete problems, look for heuristics rather than optimal

solutions

CPSC 327: Data Structures and Algorithms • Spring 2025 208

Designing Data Structures

“...in practice, it is more important to avoid using a bad data
structure than to identify the single best option available.”

[Skiena, ADM]

– ask “do we need to do better?” before “can we do better?”

CPSC 327: Data Structures and Algorithms • Spring 2025 209

Design a data structure to efficiently support –

• insert(k,e) – insert element with key k
• findMin() – find element with smallest key
• removeMin() – remove element with smallest key
• decreaseKey(e,k) – decrease element e's key to k

