

CPSC 327: Data Structures and Algorithms • Spring 2025 56

Graph Traversal

Building blocks and observations –

• Graph ADT provides operations for getting edges incident
on a vertex, and end vertices of an edge
– from a vertex you can find edges, and from an edge you can find

the vertex at the other end

• there may be more than one vertex adjacent to another,
so you can't just trace through the graph using a single
finger to point at where you are – need a container to hold
discovered vertices

Using a queue stack for the container leads to breadth-first
depth-first search.

– however, DFS is typically implemented recursively rather than
using a separate stack

CPSC 327: Data Structures and Algorithms • Spring 2025 57

dfs(G,s)
 for each vertex u in V-{s} do
 state[u] = “undiscovered”
 prev[u] = null
 state[s] = “discovered”
 prev[s] = null
 dfshelper(G,s)

dfshelper(G,u)
 process vertex u (early)
 for each edge (u,v) in G.incidentEdges(u) do
 if state[v] = “undiscovered” then
 process edge (u,v)
 state[v] = “discovered”
 prev[v] = u
 dfshelper(G,v)
 state[u] = “processed”
 process vertex u (late)

Depth-First Search

G is the graph, s is the starting vertex

this is a generalized form of the
algorithm which allows for both
early (before visiting incident
edges) and late (after visiting
incident edges) operations

a vertex is discovered when an
incident (incoming) edge has
been visited – have found a path
from s to it

a vertex is processed when all of
its incident (outgoing) edges
have been visited – have found
everything reachable from it

CPSC 327: Data Structures and Algorithms • Spring 2025 58

DFS

dfs(G,s)
 for each vertex u in V-{s} do
 state[u] = “undiscovered”
 prev[u] = null
 state[s] = “discovered”
 prev[s] = null
 dfshelper(G,s)

dfshelper(G,u)
 process vertex u (early)
 for each edge (u,v) in G.incidentEdges(u) do
 if state[v] = “undiscovered” then
 process edge (u,v)
 state[v] = “discovered”
 prev[v] = u
 dfshelper(G,v)
 state[u] = “processed”
 process vertex u (late)

incidentEdges(u) determines what order the
edges are visited in

the recursion keeps track of where the algorithm
is in the sequence – execution continues when
the call returns

CPSC 327: Data Structures and Algorithms • Spring 2025 59

Running Time of DFS

dfs(G,s)
 for each vertex u in V-{s} do
 state[u] = “undiscovered”
 prev[u] = null
 state[s] = “discovered”
 prev[s] = null
 dfshelper(G,s)

dfshelper(G,u)
 process vertex u (early)
 for each edge (u,v) in G.incidentEdges(u) do
 if state[v] = “undiscovered” then
 process edge (u,v)
 state[v] = “discovered”
 prev[v] = u
 dfshelper(G,v)
 state[u] = “processed”
 process vertex u (late)

O(n) with O(n) traversal of
vertices and O(1) labeling

incident edges is
O(deg(u)) for
adjacency list,
O(n) for adjacency
matrix

total is O(m) for
adjacency list
(each edge is
visited twice, once
from each end)
and O(n2) for
adjacency
matrix (get
incident edges
once per vertex)

total O(n+m) for adjacency list,
O(n2) for adjacency matrix

CPSC 327: Data Structures and Algorithms • Spring 2025 60

Applications of DFS – Undirected Graphs

• reachability
– every vertex reachable from s will be discovered/processed

during DFS

intuition – we follow every
edge leaving each
discovered vertex, and every
vertex put in the stack is
eventually removed and
marked as processed

dfs(G,s)
 for each vertex u in V-{s} do
 state[u] = “undiscovered”
 prev[u] = null
 state[s] = “discovered”
 prev[s] = null
 dfshelper(G,s)

dfshelper(G,u)
 process vertex u (early)
 for each edge (u,v) in G.incidentEdges(u) do
 if state[v] = “undiscovered” then
 process edge (u,v)
 state[v] = “discovered”
 prev[v] = u
 dfshelper(G,v)
 state[u] = “processed”
 process vertex u (late) CPSC 327: Data Structures and Algorithms • Spring 2025 62

BFS/DFS Search Trees

Classify each graph edge (u,v) as it is visited during
traversal –
• discovery or tree edges – v is not already discovered

– prev labels identify these edges

• back edges – v is an ancestor (other than the parent) of u
• forward edges – v is a descendant of u
• cross edges – v is not an ancestor or a descendant of u

Properties (undirected graphs) –
• discovery (tree) edges form a tree
• non-tree edges in BFS tree are cross edges connecting to

the same level or one level higher in another branch
• non-tree edges in DFS tree are back edges

CPSC 327: Data Structures and Algorithms • Spring 2025 63

BFS/DFS Search Trees

https://en.wikipedia.org/wiki/Breadth-first_search

• discovery edges form a tree
– a newly-discovered vertex is not already

part of the structure so it can’t be
involved in a cycle

CPSC 327: Data Structures and Algorithms • Spring 2025 64

BFS/DFS Search Trees

• non-tree edges in BFS tree are cross edges connecting to
the same level or one lower in another branch

• cross edges can only connect to a vertex in the queue
• can't connect to a vertex which has been removed

from the queue or else it would have been a
discovery edge from the other vertex

• can't connect to a vertex not yet put in the queue
or else would be a discovery edge from this vertex

• vertices in the queue at the same time can only be
from adjacent levels

CPSC 327: Data Structures and Algorithms • Spring 2025 65

BFS/DFS Search Trees

• non-tree edges in DFS tree are back edges

if (u,v) is a non-tree
edge, v must be
discovered but not
processed...

 – if v has been
processed, all of its
incident edges have been
visited and thus (v,u) =
(u,v) is a discovery edge

...meaning that v is an
ancestor of u → (u,v) is a
back edge

 – if v is the parent of u,
(v,u) = (u,v) is a discovery
edge

CPSC 327: Data Structures and Algorithms • Spring 2025 66

Applications of DFS – Undirected Graphs

• finding cycles
– back edge (u,v) forms a cycle consisting of the tree edges from v

to u plus back edge (u,v)
– a graph is a tree if and only if there are no back edges

CPSC 327: Data Structures and Algorithms • Spring 2025 67

Entry and Exit Times

Recording entry and exit times –
• early process (before incident edges)
 time = time+1
 entry[v] = time

• late process (after incident edges)
 time = time+1
 exit[v] = time

Properties –
• the [entry,exit] interval for v is properly nested within

interval for ancestor u
– entry times for ancestors of v are smaller than for v, while exit

times are larger

• the number of descendants of v is (exit[v]-entry[v])/2
– the [entry,exit] interval for all of the descendants is properly nested

within the interval for v – so there is both an entry and an exit for each
– time is incremented once for each entry and once for each exit

CPSC 327: Data Structures and Algorithms • Spring 2025 69

Applications of DFS – Undirected Graphs

• articulation (cut) vertices
– a cut vertex is a vertex whose removal

disconnects the graph (single point of failure)
– a biconnected graph has no cut vertices (at

least two vertices must be removed to disconnect)

– observation – if a back edge connects a
descendant of v with an ancestor of v, v is not
a cut vertex

• because the back edge forms a cycle

– idea – for each vertex, determine its earliest
reachable ancestor in the DFS search tree

• number vertices in the order first encountered by
DFS (entry time)

• earliest reachable ancestor = lowest-numbered of v,
the vertices adjacent to v via back edges, and the
earliest reachable ancestors of children of v

• v is a cut vertex if
– the earliest reachable ancestor of at least one of v's

children is the child itself or v
– if v is the root, it must also have two or more children

cut vertices marked in
red

DFS tree – DFS entry
order in black, earliest
reachable ancestor in red

CPSC 327: Data Structures and Algorithms • Spring 2025 70

Applications of DFS – Undirected Graphs

• bridges (cut edges) – edges whose removal disconnects
the graph
– edge (u,v) is a cut edge if it is a tree edge and there's no back

edge from v or a descendant of v to u or an ancestor of u

cut edges marked in red DFS tree

