

CPSC 327: Data Structures and Algorithms • Spring 2025 114

Algorithms for MST

Kruskal's algorithm –
• start with a tree T containing no edges
• repeatedly add the lowest-cost edge remaining that

connects two different chunks of the tree-in-progress

Prim's algorithm –
• start with a tree T containing a single vertex S
• repeatedly add the cheapest edge connecting a vertex in

S and a vertex in V-S to T

CPSC 327: Data Structures and Algorithms • Spring 2025 115

Kruskal's Algorithm

Running time using union-find?

• initialization: makeset(v) for each vertex
– O(makeset) per iteration, n iterations

• finding the lowest-cost edge
– can sort edges by weight, then iterate through
– O(m log n) to sort + O(1) time per iteration, m iterations

• determine if an edge connects two separate chunks
– O(find) per iteration, m iterations

• combine two chunks when an edge is chosen
– O(union) per edge chosen, n-1 edges chosen

→ total: O(n ✕ makeset + m log n + m ✕ find + n ✕ union)

MST empty set←

for each v in V
 makeset(v)

E’ sort E by weight←

for each edge e=(u,v) in E’
 if find(u) != find(v)
 add e to MST
 union(u,v)

❶

❷

❸

❹

❶
❷

❸

❹
steps contribute
O(1) per

❺

❺

❺

CPSC 327: Data Structures and Algorithms • Spring 2025 117

Union-Find Summary

• union-by-rank list implementation yields O((n+m) log n)
for Kruskal's algorithm
– O(1) makeset(x)
– O(1) find(x)
– O(n log n) for a series of n union(x,y)

• union-by-rank tree implementation with path compression
yields O(m log n) for Kruskal's algorithm
– O(1) makeset(x)
– effectively O(1) find(x) and union(x,y)

• the tree height is a very slow-growing log*
• amortized over a series of operations

total: O(n ✕ makeset + m log n + m ✕ find + n ✕ union)

CPSC 327: Data Structures and Algorithms • Spring 2025 118

Amortized vs. Average

Amortized time is a time-averaged running time.

• based on a worst-case analysis of the running time of an
arbitrary sequence of operations
– worst-case running time of any sequence of n operations / n

• gives the average worst-case performance of each
operation
– but any particular instance of the operation may be (far) worse

• useful when expensive cases exist but occur infrequently
– e.g. dynamic array resizing
– e.g. union-find with path compression
– e.g. splay trees

CPSC 327: Data Structures and Algorithms • Spring 2025 119

Amortized vs. Average

Amortized time is a time-
averaged running time.

• worst-case analysis of the
running time of an arbitrary
sequence of operations
– worst-case running time of

any sequence of n
operations / n

• average worst-case
performance of each
operation
– any single operation may be

(far) worse
– total for the sequence will

not exceed n ✕ operation
time

Average time is an instance-
averaged running time.

• average-case analysis of
the running time of an
operation
– based on the probability of

each input instance
occurring

• expected performance of
each operation
– any single operation may be

(far) worse
– low (but non-zero)

probability that total for a
sequence will exceed n ✕
operation time

CPSC 327: Data Structures and Algorithms • Spring 2025 120

Algorithms for MST

Prim's algorithm –
• start with a tree T containing a

single vertex S
• repeatedly add the cheapest

edge connecting a vertex in S
and a vertex in V-S to T

CPSC 327: Data Structures and Algorithms • Spring 2025 121

Prim's Algorithm

The idea:
• repeatedly add the cheapest edge connecting a vertex in

S and a vertex in V-S to T

Implementation details:
• cheapest edge connecting S to V-S → ??

– the set of eligible edges changes as new vertices are added to
the tree → sounds like a priority queue ordered by edge weight

mark s as visited
add s's incident edges to PQ
while PQ is not empty (and T has fewer than n-1 edges)
 e PQ.removeMin()←
 if e has an unvisited end vertex v,
 add e to T
 mark v as visited
 add v's incident edges to PQ (omitting those connecting
 to already-visited vertices)

CPSC 327: Data Structures and Algorithms • Spring 2025 122

Prim's Algorithm

Running time?
• pick any starting vertex

→ O(1)

• one iteration per edge
→ O(m)

• removeMin
→ O(log m) per iteration, up to m iterations

• traverse incident edges
→ O(m) total

• iterate through 2m edges (once from each end) at O(1) per

• add incident edges to queue
→ O(m log n) total

• O(log m) to add to queue; each edge is added at most once

• mark as visited / check status
→ O(1) per

→ total: O(m log n)
– using heap implementation of priority queue

• need incident edges → choose
adjacency list implementation for graph

mark s as visited
add s's incident edges to PQ
while PQ is not empty (and T has fewer than
 n-1 edges)
 e PQ.removeMin()←
 if e has an unvisited end vertex v,
 add e to T
 mark v as visited
 add v's incident edges to PQ (omitting
 those connecting to already-visited
 vertices)

❶

❷

❸

❺

❸❹

other steps contribute
O(1) per

❹

❸

❷

❶

❺

❹
❺

❺

CPSC 327: Data Structures and Algorithms • Spring 2025 123

Prim's Algorithm

Can we do better?
– O(m log n) isn't an improvement over O((n+m) log n) or

O(m log n) for Kruskal's algorithm

The running time is dominated by the queue operations.
More efficient insert and remove isn't that feasible (we need
both), but what about doing fewer operations?

– many of the edges in the priority queue aren't useful because
they connect within S

– alternative: store the vertices in V-S in the priority queue instead
of edges, ordered by the cost of the cheapest edge between the
vertex and a vertex of S

• the idea is to maintain a collection of what could be the next vertex added
to the spanning tree, along with the cheapest cost of connecting that
vertex

CPSC 327: Data Structures and Algorithms • Spring 2025 124

Prim's Algorithm

algorithm prim(G,w)
 input: connected undirected
 graph G with edge weights w
 output: MST defined by the
 'prev' labels

for all u in V
 cost[u] ← ∞
 prev[u] null←
s a vertex of G←
cost[s] 0←

PQ makeQueue(V)←
while PQ is not empty
 v PQ.removeMin()←
 for each edge (v,z) in E
 if cost[z] > w(v,z) then
 cost[z] = w(v,z)
 prev[z] = (v,z)
 PQ.decreaseKey(z)

For each vertex in V-S, keep
track of the cheapest known
edge connecting it to S.

– prev(v) = the cheapest known
edge connecting v to S

– cost(v) = weight of edge
prev(v)

“Known” edges are those
incident on vertices in S.

– the information is complete for
any vertex in V-S connected
to one in S

– update prev/cost information
when we add a vertex to S

CPSC 327: Data Structures and Algorithms • Spring 2025 125

Prim's Algorithm

Running time?

• same structure as Dijkstra's algorithm, same running time
– O((n+m) log n) for a heap-based priority queue
– can do better with a fancier PQ implementation – O(n log n) for

sparse, O(n2) for dense

CPSC 327: Data Structures and Algorithms • Spring 2025 126

MST

Prim's or Kruskal's?

• can achieve better running time with Prim's algorithm and
a fancy PQ implementation

• (standard) PQ is a more common data structure than
union-find (or a fancy PQ)

• need to repeat Prim's on each connected component if
the graph is not connected
– Kruskal's handles disconnected graphs without anything

additional

CPSC 327: Data Structures and Algorithms • Spring 2025 127

Takeaways

• definitions: spanning tree, minimum spanning tree

• algorithms for MST – kruskal’s, prim’s
– what the algorithm is – be able to trace
– running time and pros/cons of each algorithm

• union-find data structure
– operations – makeset, find, union
– union-by-rank list implementation – what it is, running time
– union-by-rank tree implementation – running time
– as an example of an incremental approach to data structure

development

CPSC 327: Data Structures and Algorithms • Spring 2025 128

Recap

• graph algorithms
– BFS-based algorithms – reachability, connected components,

unweighted shortest path, 2-coloring

– DFS-based algorithms – reachability, cycle detection, cut vertices, cut
edges, strongly connected components, topological sort

– shortest weighted paths – Dijkstra's algorithm, Bellman-Ford, Floyd-
Warshall (all pairs shortest path)

– MST – Kruskal's and Prim's algorithms

– max flow, min flow, …

• new data structure
– union-find

• a surprising insight
– sometimes the simple solutions are better (or at least not worse)

• and a less-surprising observation
– the best implementation depends on the situation

