Developing Algorithms

Strategies —

realize your problem is another well-known problem in
disguise

it is searching or sorting

there’s a data structure for that

it is a graph problem

develop a new algorithm
divide and conquer
series of steps — iterative

series of choices — greedy, backtracking, branch and bound,
dynamic programming

CPSC 327: Data Structures and Algorithms + Spring 2025 40

Recursive Patterns

Characterized by the number and size of subproblems —

1 friend — can often easily be written as iterative instead

constant amount — subproblem is smaller by a fixed number of
elements (typically 1)
e.g.a"=aa" orn!=n(n-1)!

constant factor — subproblem is a fixed fraction of the size
(typically %2) — “decrease and conquer”

e.g. binary search

e.g. a"= (a"»?if nis even, a (a™??)?if n is odd

variable factor — subproblem is smaller, but the size of the
reduction varies
e.g. gcd(m,n) = gcd(n,m mod n)

CPSC 327: Data Structures and Algorithms + Spring 2025 a2

Algorithmic Structures

Iterative algorithms proceed forward towards the solution
one step at a time.

Recursive algorithms have friends solve subproblems.

construct a complete solution out of complete solutions for
smaller subproblems

induction lets you demonstrate that the solution for the bigger problem is
correct

base case defines when you stop
making progress ensures that you will get there (recursion will terminate)

CPSC 327: Data Structures and Algorithms + Spring 2025 a1

Recursive Patterns

Characterized by the number and size of subproblems —

2+ friends

divide-and-conquer — split into b > 2 subproblems of size n/b
(b is typically 2)

case analysis — each friend gets a subproblem resulting from a
different alternative

CPSC 327: Data Structures and Algorithms + Spring 2025 a3

How to Design Algorithms

« establish the problem

« identify avenues of attack

« define the algorithm

» show termination and correctness
» determine efficiency

CPSC 327: Data Structures and Algorithms + Spring 2025 6

How to Design (Divide-and-Conquer) Algorithms

How to Design (Divide-and-Conquer) Algorithms

Establish the problem. Defining — and understanding — the precise task to be solved is an

prerequisite for algorithm development.

o Specifications.
State complete specifications for the problem. What is the problem? What do you start with (input)
and what is the end result (output)? What are the legal input instances and the required output for
each?

Ezamples.
If needed, give examples (specific inputs and the corresponding outputs) of typical and special cases
to clarify the specifications.

Identify avenues of attack. Determine the algorithmic approach(es) to try.

o Tuargets.
Identify any applicable time and space requirements for your solution. This might be stated as part
of the problem (“find an O(nlogn) algorithm”), come from having an algorithm you are trying to
improve on, or stem from the expected input size (e.g. you need to work with very large inputs so you
need O(nlogn) or better).

o Targets.
Divide-and-conquer algorithms often seek to improve on a polynomial-time iterative brute-force running
time. If there aren’t other targets, identify the brute force algorithm and its running time.

o Approach.
Identify applicable approach(divide and conquer or series of choices? For each, consider briefly
what that approach would look like for this problem — does it even make sense?

e Paradigms and patterns.

Based on the targets and approach(es) identified, identify the applicable paradigm(s) and specific
pattern(s) within each paradigm. For each, consider briefly what that paradigm and pattern would
look like for this problem — does it even make sens

e 2+-friend solutions, where there is more than one subproblem at each level

~ divide-and-conquer
Each friend gets a portion of the input: the problem is split into b subproblems of size n/b where
b> 2 (typically 2).

ach as “first half” and “second
from the friends to produce the

o easy split, where the input is divided in half in a straightforward way
half”); the work in the main case is primarily in combining the results
solution

o easy merge, where each friend produces some of the output (typically one friend produces the first
part of the output and the other friend produc

the second part); the work in the main case is primarily
CPSC 32 in splitting the input

CPSC 327: Data Structures and Algorithms + Spring 2025 a7

Define the algorithm. Assemble the picces of the algorithm according to the template for the particular
paradigm and pattern, culminating in a statement of the algorithm itself.

o Size.
What is the size of the problem, and what constitutes a smaller problem? What is the simplest/smallest
instance of the problem?

o Generalize / define subproblems.
Define the subproblem — the task, the input, and the output. Write this as a function definition where
parameters and return values are explicitly identified.

o Base case(s).
Address how to solve the smallest problem(s). This is often trivial, or is solved via brute force.

o Main case.
Address how to solve a typical large problem instance (one that is not a base case). Specify how many
friends are needed and what subproblem is handed to each friend, as well as how the results the friends
hand back are combined to solve the problem.

o Top level.
The top level puts the context around the recursion.
— Initial subproblem.

v the inputs and parameters for the initial subproblem — the one whose solution solves the
original problem.

— Setup.
Whatever must happen before the initial subproblem is solved.

— Wrapup.
Whatever must happen to get the final answer after the solution for the initial subproblem is
obtained.

o Special cases.
Make sure the algorithm works for all legal inputs — identify the cases that need to be handled and
address how that handling is incorporated into the previous steps (if not already accounted for)

o Algorithm.
Assemble the algorithm from the previous steps and state it.

There shouldn’t be new elements here, instead bring together the base case(s), main case, and top level
CPSC3: with any handling needed for special cases and state the whole algorithm. 49

How to Design (Divide-and-Conquer) Algorithms

How to Design (Divide-and-Conquer) Algorithms

Show termination and correctness. Show that the algorithm produces a correct solution.
e Termination. Show that the recursion — and thus the algorithm — always terminates.

— Making progress.

Explain why what each of your friends get is a smaller instance of the problem.
— The end is reached.

Explain why a base case is always reached.

e Correctness. Show that the algorithm is correct.

Determine efficiency. Evaluate the running time and space requirements of the algorithm.

e Implementation.
Identify data structures and, as necessary, specific implementations of those data structures to efficiently
support the algorithm. Also fill in any algorithmic details that are needed in order to establish the
running time.

e Time and space.

As the running time and space requirements of the algorithm given the implementation identified.

— Establish the base .
Explain why the solution is correct for each bas

— Show the main case.

Assume that the friends return the correct results for their subproblem, and explain why the

correct answer is then produced from those results.

— Final answer.

Explain why the top level — the setup plus a correct solution to the initial subproblem followed

by the wrapup — means that the final result is a correct answer to the problem.

Recursive algorithms tend to lead to recurrence relations in one of two forms:

split off b elements
T(n) = a T(n-b) + f(n) where f(n) = 0 or ©(n° log® n)

divide into subproblems of size n/b
T(n) = a T(n/b) + f(n) where ©(n° log® n)

CPSC 327: Data Structures and Algorithms + Spring 2025

e Room for improvement.
Are the targets met? Is it ne
needed, identify possible avenues for improvement.

ary to do better? If improvements in running time and/or space are

CPSC 327: Data Structures and Algorithms + Spring 2025

