

CPSC 327: Data Structures and Algorithms • Spring 2025 22

HW4

• approaching the problems

– the stated running time goals and the section headers in the
exercises provide strong directions as to the nature of the
solutions

• O(1) → accessing a slot in an array, accessing a stored value
• O(log n) → binary search, balanced search tree, complete binary tree
• O(n) → allows for traversal of most data structures

CPSC 327: Data Structures and Algorithms • Spring 2025 23

HW4

• level of detail in writeup

– code/pseudocode alone is likely too detailed for the reader to
understand the idea

– but also be concise in your writeup
• review both your ideas and your writeup for opportunities to simplify – and

also to make sure you’ve provided enough explanation

– do not need to describe standard operations – find, insert, delete
– for standard data structures discussed in class but do need to
describe other operations or variations on the standard

– do need to explain how a structure is used to store the values
• i.e. what is stored in the slots of an array, nodes of a linked list, or nodes

of a tree

CPSC 327: Data Structures and Algorithms • Spring 2025 24

HW4

• #1 – ADM 3-2
– make sure you understand the problem – looking for the sum

total of sequences of balanced parens, not the longest such

10 + 2 = 12

CPSC 327: Data Structures and Algorithms • Spring 2025 25

HW4

• #2 – ADM 3-25

– best-fit – find the bin with the smallest remaining space after the
object is added means the bin with the least remaining space of
those with enough space for the object

CPSC 327: Data Structures and Algorithms • Spring 2025 26

HW4

• #4 – ADM 4-41
– the question is about expected performance, not worst case

• compute the expected number of elements looked at in each scenario

– the expected value for something with two alternatives is
p alt1 + (1-p) alt2

– for binary search, the expected number of elements looked at is
log

2
 n for both successful and unsuccessful searches

– for sequential search, the expected number of elements looked
at is n/2 for a successful search and n for an unsuccessful
search

– for the two-array scenarios, a regular customer search involves
an unsuccessful search of the good customer array followed by
a (hopefully) successful search of the regular customer array

– big-Oh plays no part here – big-Oh addresses the growth rate of
the running time but we are interested in comparing for specific
values of n

• it doesn’t make sense to say O(log 10000) – that’s saying the growth rate
grows like log 10000, which is a constant

CPSC 327: Data Structures and Algorithms • Spring 2025 27

HW4

• #5 – ADM 3-11

– hashtables are O(1) expected time – any given operation could
be O(n) worst cast, though that is unlikely

– the problem asks for O(1) worst case time

CPSC 327: Data Structures and Algorithms • Spring 2025 28

HW4

• #6 – ADM 3-18

– storing additional information can achieve O(1) time the desired
operations, but also need to address specifically how to update
that stored information in other operations with enough detail to
understand both the correctness of the update and its running
time

– insert/delete is already O(log n) for a balanced BST, so any
additional O(log n) update is sufficient for the problem but it is
worth explaining how to do it in O(1) time if possible

