How to Design (lterative) Algorithms

establish the problem

identify avenues of attack

define the algorithm

show termination and correctness
determine efficiency

CPSC 327: Data Structures and Algorithms + Spring 2025

How to Design (Iterative) Algorithms

Define the algorithm. The core of an iterative algorithm is defining the loop.

How to Design (Iterative) Algorithms

Tdentify avenues of attack.

o Paradigms and patterns

Consider the iterative patterns defined in section 3.

pattern Toop structure’

Pprocess mput Tor each jnput eloment, process Lhat
element and incorporate it into the

solution so far

produce output repeatedly produce the next output
element
repeatedly produce the next p

solution

e of the

nari

search space

row the Tepeatedly climinate some non-solutions

CPSC 327: Data Structures and Algorithms + Spring 2025

In a group of people, it is to be expected that some of them may not
want to work with each other. Assuming that each person has at
most d other people that they don't want to work with, divide the
people into d+1 groups so that everyone is in exactly one group and
no one is in a group with someone they don't want to work with.

Datter Toop strcture

oxit_ condition

o Main steps.
This is the core of the algorithm — the loop body. What's being repeated?
o Exit cond,
When does the loop end? | 22000 Toop structure exit condition |
‘process mput Tor cach mput clement, pr That “when all of the mput clements have been

it into the

clement and incorporat
solution so far

pro

produce output | tepeatedly produce the next output
clement
repeatedly produce the next piece of the
solution

When all of the output clements ave
been produced
when the solution is complete

Tarrow (h Tepeatedly eliminate some non-soltions
search s

olution has found or there are
left.

‘when the
1o solutions

Setup.
Whatever must happen before the loap begins.

Wrapup.
Whatever must happen to get the final answer after the laop ends.

Special c
Make sure the algorithm works for all legal inputs

ntify the c

add

Algorithm.

Assemble the algorithm from the previous steps and state it.

There shouldn’t be new elements here, instead bring together the main steps, exit condition, setup,
and wrapnp along with any handling needed for special cases and state the whole algorithm.

ses that need to be handled and
s how that handling is incorporated into the previous steps (if not already accounted for)

M-

N process input Tor
Main steps.

solution so far

L put clement, pro
element and incorporate it into the

s that

‘when all of the nput elements have been
pro

incorporate the next input item into the solution to obtain a solution for one
more element

for each element, process it
for each person, put them into a group

for each person, put them into the first group not containing someone they
don't want to work with

produce the next output item

for each group, add people to that group as long as there isn't anyone in the
group that they don't want to work with

3 respondents

3 respondents

2 respondents

5 respondents

3 respondents

60 %

60%

40%

100%*

<

0%

Exit condition. The loop ends when --

all of the input items have been processed
when all of the ouput items have been produced
when every person has been added to a group
when everyone has been assigned to a legal group
when no one else can be added to the current group
when all of the groups are full

when d+1 groups have been formed

3 respondents
1 respondent
3 respondents

5 respondents

1 respondent

60%*
20 %
60 %
100%
0%
0%

o
S
®
I‘ I

20%

How to Design (lterative) Algorithms

Show termination and correctness. Show that the algorithm produces a correct solution.

o Termination. Show that the loop — and thus the algorithm — always terminates.

Measure of progress.

Identify a quantity and the direction of change that leads towards the exit condition.

Making progress.

Explain why every iteration of the loop advances the measure of progress towards the exit cond
tion.

The end is reached.
Explain why making progress ensures that the exit condition is always reached.

pattern measure of progr making progress | fermination argument

process mumber of input each iteration repeatedly processing one more input

input elements processed proc s one element means that eventually all will
more element have been processed

producs mumber of elements in each iteration repeatedly producing one more output

ontput the solution produces one element or one more piece of the solution
more element means that eventually all will have been

produced
Tartow the | size of the current range | each fteration Tepoatodly reducing the size of the
search space | or (alternatively) the reduces the size | current range or the number of solutions

number of solutions still | of the search

still in the current range means that
in the current range space eventually there will be no solutions left if
the solution hasn’t been found

CPSC 327: Data Structures and Algorithms + Spring 2025 65

How to Design (Iterative) Algorithms

o Correciness,

Show that the algorithm is correct.

Loop invariant.
State a loop invariant.

Establish the loop invariant

Explain why the loop invariant holds at the beginning of the first and second iterations of the
loop.

Maintain the loap invariant,

Explain why the loop invariant c ach iteration — assuming that it holds
at the beginning of iteration k, explain why it also holds at the beginning of the next iteration
(k+1).

Final answer.

Explain why the whole algorithm — setup, loop, wrapup — means that the final result is a correct
answer to the problem.

s to be true aft

pattern Toop inwv;

ant

process input have a correct solution for the

irst & input elements, or (alternatively]
haven’t gone wrong yet (solution so far is consistent with a solution for the

whole problem)

produce output have produced the first & elements of the correct output

narrow the search space | either the element is within the current search space [set of solutions or it

was never present at all, or (alternatively) not all of the solutions (if there
are any) have been eliminated

CPSC 327: Data Structures and Algorithms + Spring 2025 67

In a group of people, it is to be expected that some of them may not
want to work with each other. Assuming that each person has at
most d other people that they don't want to work with, divide the
people into d+1 groups so that everyone is in exactly one group and
no one is in a group with someone they don't want to work with.

pattern measure of progress making progress | termination argument

process mumber of input each iteration repeatedly processing one more inpit

input elements processed proc one element means that eventually all will
more element have been processed

Exit condition. The loop ends when --

all of the input items have been processed 3 respondents 60 % -
when all of the ouput items have been produced 1 respondent 20 % -
when every person has been added to a group 3 respondents 60% - v
Measure of progress.
something to count the number of people added to groups 2 respondents 0% -
the number of elements considered 2 respondents 40% -
the number of elements left to consider 1 respondent 0%
number of input items processed 4 respondents 80% _
number of output items processed 0% |
number of groups that have been filled 1 respondent 20% -
number of people that have been assigned to a group 3 respondents 60% _ v
number of people not yet assigned to a group 5 respondents 100% _
_
CPSC 327: Data Structures and Algorithms = Spring 2025 66

In a group of people, it is to be expected that some of them may not
want to work with each other. Assuming that each person has at
most d other people that they don't want to work with, divide the
people into d+1 groups so that everyone is in exactly one group and
no one is in a group with someone they don't want to work with.

the first k people have been assigned to groups

the first k people have been assigned to groups so that no one is in a group
with someone they don't want to work with

there are at most d+1 groups
the first k people have been assigned to groups so that no one is in a group
with someone they don't want to work with and there are at most d+1
groups

have a correct solution for the first k input items

haven't gone wrong yet

have produced the first k items of the output

the first k groups have been assigned people

the first k groups have been assigned people without anyone being in a
group with someone they don't want to work with

2 respondents

4 respondents

2 respondents

4 respondents

2 respondents

1 respondent

1 respondent

Main steps.
for each person, put them into the first group not containing someone they w
don't want to work with
Exit condition. The loop ends when -- ‘
‘when every person has been added to a group 3 respondents 60% - v ‘
pattern Toop mnvariant
Procoss mput Tiave a correct solution for the first & Input cloments, or (alternatively)
T — haven’t gone wrong yet (solution so far is consistent with a solution for the
Loop invariant. whole problem)

