Dynamic Programming

The idea of dynamic programming —

« formulate the problem as a backtracking problem
series of choices approach
« solution is constructed by making a series of decisions
case analysis recursive structure

« you consider the next possibilities for the current decision, then ask
friends to solve the problem given the consequences of each choice

subproblem solution is just the subproblem solution, not a
complete solution

« identify how to parameterize the subproblems so that
subproblem solutions can be stored instead of
recomputed — memoization

* compute subproblem solutions by iterating through the
subproblem states rather than doing a depth-first search
of the solution space

CPSC 327: Data Structures and Algorithms + Spring 2025 128 cPsc

the current index k 3 respondents 50 %

the subsequence-so-far T 1 respondent 47752

the last element in the 9
3 respondents 50%
subsequence-so-far T

the index in T of the last element

in subsequence-so-far T

the index in S of the last element %
) 2 respondents 33
in subsequence-so-far T

something else (in addition to

anything that might be selected @%
above)

this can't be memoized because T

) 1 respondent 1773
is a subsequence

<

CPSC 327: Data Structures and Algorithms + Spring 2025 130

The longest increasing subsequence problem is the following: Given a
sequence S of numbers, find the longest subsequence containing
increasing numbers. The numbers in the subsequence must occur in
that order in S, but need not be consecutive in S. You can assume that
S contains only integers.

For example, if S is the sequence s 10 2 7 10 1 18 3, then both 5 10 18
and 2 7 10 18 are increasing subsequences and (2 7 10 18 is the longest
increasing subsequence.

As a backtracking problem, a process input approach to the series of
choices results in: for each element of S, determine whether or not to
include it in the longest increasing subsequence. The subproblem can
then be formulated as: Given a current index k in S and an increasing-
subsequence-so-far T of §[0..k-1], find the longest increasing
subsequence T’ of S[k..n-1] such that the elements of T followed by the
elements of T' are an increasing subsequence of S.

Turning this into a dynamic programming algorithm requires
memoization. Which of the following should be used to parameterize
the subproblem for memoization? Choose all that apply.

Dala Structures and AGonthms + Spring 2025



