

CPSC 327: Data Structures and Algorithms • Spring 2025 29

Reductions for Algorithms

• can be helpful for solving a new problem
– provides another way of thinking about the problem which may

reveal new insights
– can provide a black box for solving the trickiest algorithmic part

• but may not be the most efficient way to solve the
problem
– e.g. driving to Seattle is an O(n) greedy algorithm if sorted,

O(n log n) if not → shortest path in a graph O(n2)

CPSC 327: Data Structures and Algorithms • Spring 2025 30

Complexity

Some problems seem to be more difficult to solve efficiently
than others.

• the obvious brute force algorithm often has very different
running time for different algorithms

– e.g. closest pair of points – n2

• compute the distance for every pair

•

– e.g. 0-1 knapsack – 2n

• try every subset

https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
https://plus.maths.org/content/maths-minute-knapsack-problem

CPSC 327: Data Structures and Algorithms • Spring 2025 31

Complexity

Some problems seem to be more difficult to solve efficiently
than others.

• small changes in a problem can make it much harder to
solve
– e.g. fractional knapsack vs 0-1 knapsack
– e.g. linear programming vs integer linear programming
– e.g. shortest path in a graph vs the longest

• (note: general graph, not limited to DAG)
– e.g. use every edge once (Euler circuit) vs use every vertex once

(hamiltonian cycle)

CPSC 327: Data Structures and Algorithms • Spring 2025 32

Complexity

Some problems seem to be more difficult to solve efficiently
than others.

• algorithmic techniques which work to speed up some
problems don't work for others
– e.g. greedy vs dynamic programming vs recursive backtracking

CPSC 327: Data Structures and Algorithms • Spring 2025 33

Complexity

Are there some problems which take fundamentally longer
to solve than others, or have we just not been clever
enough yet to find an efficient solution?

CPSC 327: Data Structures and Algorithms • Spring 2025 34

Famous Complexity Classes

P – decision problems solvable by a deterministic Turing
machine in polynomial time

NP – decision problems verifiable by a deterministic Turing
machine in polynomial time

FP – function problems solvable by a deterministic Turing
machine in polynomial time

FNP – function problems verifiable by a deterministic Turing
machine in polynomial time

CPSC 327: Data Structures and Algorithms • Spring 2025 35

Decision Problems vs Function Problems

Decision problems are problems where the result is a
yes/no answer.

– e.g. is there a solution to the 0-1 knapsack problem with total
weight ≤ W and total value ≥ V?

Function problems compute the result of a function.
– e.g. 0-1 knapsack problem: maximize the total value such that

the total weight ≤ W

Observation –
• a function problem can be solved efficiently given a black box for

the corresponding decision problem
– “efficiently” = logarithmic number of steps

• use one-sided binary search
(one-sided binary search for knapsack means trying V = 2i for i = 0, 1, 2, …
until the answers are different for successive values of i, then repeating the
process within the interval found to find a smaller interval, and so forth)

CPSC 327: Data Structures and Algorithms • Spring 2025 36

Turing Machines

A Turing machine is a theoretical machine consisting of:
– an infinite tape divided into cells
– a head that can read and write symbols on the tape, and move

one cell left or right
– a current state, which is one of a finite number of possible states
– a finite table which, given a current state and symbol on the

tape, specifies an action (erase or write symbol), a movement
(left, right, or stay), and a new state

http://www.nikoloplakis.gr/

CPSC 327: Data Structures and Algorithms • Spring 2025 37

Deterministic vs Nondeterministic

A deterministic Turing machine has at most one rule that
applies to a given state and symbol.

A nondeterministic Turing machine may have multiple rules
that apply to a given state and symbol.

CPSC 327: Data Structures and Algorithms • Spring 2025 38

Famous Complexity Classes

P – solvable by a deterministic Turing machine in
polynomial time
NP – verifiable by a deterministic Turing machine in
polynomial time

– alternatively, solvable by a nondeterministic Turing machine in
polynomial time

Key points –
• for NP, technically it is only “yes” solutions that are

polynomial-time verifiable

• in both cases, there are at most a polynomial number of
choices to make in order to generate the solution
– for each choice –

• deterministic has rules to pick the right alternative
• nondeterministic can be thought of as correctly guessing the right

alternative

a “yes” answer requires only a single instance that
works (and is checkable in polynomial time)
a “no” answer requires showing that no instance
works

CPSC 327: Data Structures and Algorithms • Spring 2025 39

Famous Complexity Classes

• does NP include P?
– yes – if you can solve a problem in polynomial time, you can

always verify a possible solution by computing the solution
yourself and comparing

• are there problems in NP that aren't in P?
– probably
– (proving this one way or the other will get you fame and a million

dollars)

• are there problems that aren't in NP?
– yes e.g. function problems (NP is only decision problems), the

halting problem (undecidable)

that is, is every problem in P also in NP?

CPSC 327: Data Structures and Algorithms • Spring 2025 40

Famous Complexity Classes

P – decision problems solvable by a deterministic Turing
machine in polynomial time

NP – decision problems verifiable by a deterministic Turing
machine in polynomial time

FP – function problems solvable by a deterministic Turing
machine in polynomial time

FNP – function problems verifiable by a deterministic Turing
machine in polynomial time

CPSC 327: Data Structures and Algorithms • Spring 2025 41

Famous Complexity Classes

• does FNP contain FP?
– yes

• are there problems in FNP that aren't in FP?
– probably (for the same reason as there are probably problems in NP

not in P)

• are there problems that aren't in FNP?
– yes – e.g. enumeration tasks (solution size can be exponential)

CPSC 327: Data Structures and Algorithms • Spring 2025 42

Famous Complexity Classes

• is FP easier or harder than P?
– no – each can be used a black box to efficiently solve the other

problem
• the solution to the FP version can be used directly to answer the P

version's question
• the P version can be used as a black box to find the FP solution in

polynomial time using one-sided binary search

• is FNP easier or harder than NP?
– [Bellare, Goldwasser 1994] under certain assumptions, there are

FNP problems that are harder than their corresponding NP
problems

A can't be easier than B if A can be used to efficiently solve B

i.e. there seem to be problems in FNP where a solution to the
NP version can't be used to efficiently solve the FNP version

CPSC 327: Data Structures and Algorithms • Spring 2025 43

Determining Complexity

Reductions are useful for making arguments about
complexity.

Let A be a problem with a polynomial-time reduction to B.
– i.e. polynomial time to turn an instance of A into an instance of B,

and polynomial time to turn a solution for B into a solution for A

Then B is at least as hard as A.
Why?

– if B has an efficient algorithm, A can be solved efficiently via the
reduction

– if B doesn't have an efficient algorithm, it may still be possible to
solve A efficiently using a different approach – we don't know

easy/hard has to do with
efficiency of solution

CPSC 327: Data Structures and Algorithms • Spring 2025 44

the convex hull of a set
of points is the shape of
a rubber band stretched
around those points

Reductions for Lower Bounds

Sorting can be reduced to convex hull –
• for each element i to be sorted, create a

point (i,i2)
• compute the convex hull of the points

– (using an algorithm that outputs the hull
points in cyclic order)

• read points on the hull from left to right,
starting with the leftmost point in the hull
– this is the sorted order of the elements

http://www.cs.umd.edu/class/fall2014/cmsc754/Lects/lect04.pdf

CPSC 327: Data Structures and Algorithms • Spring 2025 45

Reductions for Lower Bounds

Sorting can be reduced to convex hull –
• for each element i, create a point (i,i2)
• compute the convex hull

– (using an algorithm that outputs the hull
points in cyclic order)

• read points on the hull from left to right,
starting with the leftmost point in the hull

Since comparison-based sorting is known to take Ω(n log n)
time, the ?? step cannot be faster than n log n or else we'd
have a better algorithm for sorting using convex hull.

→ convex hull (if the points on the hull are output in cyclic order)
is Ω(n log n)

O(n)

O(n)

O(??)

CPSC 327: Data Structures and Algorithms • Spring 2025 46

Completeness

Within a class, the complete problems are the hardest – if
you can solve a complete problem, you can solve every
problem in the class.

• P-complete – set of problems in P such that every other
problem in P is polynomial-time reducible to one in the set
– these are problems believed to be “inherently sequential” i.e. a

parallel computer would not significantly speed them up

• NP-complete – set of problems in NP such that every
other problem in NP is polynomial-time reducible to one in
the set

CPSC 327: Data Structures and Algorithms • Spring 2025 47

Karp's 21 NP-Complete Problems

One of the first demonstrations that many common
computational problems are computationally intractable.
(1972)

Richard Karp,
1935-

American
computer scientist

known for work in
computer science,
combinatorial
algorithms, operations
research,
bioinformatics
• Held-Karp algorithm – TSP
• Edmonds-Karp algorithm –

max flow
• 21 NP-complete problems
• Hopcroft-Karp algorithm –

matchings in bipartite graphs
• Karp-Lipton theorem –

complexity result
• Rabin-Karp string search

algorithm

1985 Turing Award for
contributions to the
theory of NP-
completeness CPSC 327: Data Structures and Algorithms • Spring 2025 48

Karp's 21 NP-Complete Problems

clique is there a set of k vertices in the graph such that every vertex in
the set is connected to every other vertex in the set?

clique cover can the graph be partitioned into k cliques?

vertex cover is there a set of k vertices in the graph such that every edge has
at least one endpoint in the set?

chromatic number can the graph be colored with k colors?
feedback node
set

is there a set of k vertices in an undirected graph whose removal
leaves the graph without cycles?

feedback arc set is there a set of k edges in a directed graph whose removal
leaves the graph without directed cycles?

directed
hamiltonian cycle is there a directed/undirected cycle which visits every vertex

exactly once?undirected
hamiltonian cycle

max cut
can the vertices of a graph be split into two sets so that the sum
of the weights of the edges between vertices in different sets is
at most k?

Steiner tree version of MST where additional points may be introduced to
reduce the overall weight of the tree

CPSC 327: Data Structures and Algorithms • Spring 2025 49

Karp's 21 NP-Complete Problems

CNFSAT is there an assignment of values to make a boolean expression with
only OR and NOT within a clause and clauses joined by AND true?

3-SAT CNFSAT where there are exactly three variables per clause
binary integer
programming

linear programming where variables are constrained to the values 0
or 1

set packing in a collection of sets, is there a group of k that are disjoint?

set covering given a collection of subsets of X, is there a group of k subsets that
together contain every element of X?

exact cover given a collection of subsets of X, is there a group of those subsets
such that every element of X is contained in exactly one subset?

hitting set given a collection of subsets of X, is there a subset H of X of size k so
that every set in the collection contains at least one element of H?

3-dimensional
matching

given a set of triples (x,y,z) where x ∊ X, y ∊ Y, z ∊ Z, is there a
collection of triples such that every element of X, Y, and Z occurs
exactly once?

0-1 knapsack is there a set of items with total weight ≤ W and total value ≥ V?

partition can a set of numbers be split into two parts so that the sums of the
parts are equal?

job
sequencing

can a set of jobs be scheduled so that no more than k miss their
deadlines?

