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Reductions for Algorithms

• can be helpful for solving a new problem
– provides another way of thinking about the problem which may 

reveal new insights
– can provide a black box for solving the trickiest algorithmic part

• but may not be the most efficient way to solve the 
problem
– e.g. driving to Seattle is an O(n) greedy algorithm if sorted,     

O(n log n) if not → shortest path in a graph O(n2)
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Complexity

Some problems seem to be more difficult to solve efficiently 
than others.

• the obvious brute force algorithm often has very different 
running time for different algorithms

– e.g. closest pair of points – n2

• compute the distance for every pair

•

– e.g. 0-1 knapsack – 2n

• try every subset

https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
https://plus.maths.org/content/maths-minute-knapsack-problem
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Complexity

Some problems seem to be more difficult to solve efficiently 
than others.

• small changes in a problem can make it much harder to 
solve
– e.g. fractional knapsack vs 0-1 knapsack
– e.g. linear programming vs integer linear programming
– e.g. shortest path in a graph vs the longest

• (note: general graph, not limited to DAG)
– e.g. use every edge once (Euler circuit) vs use every vertex once 

(hamiltonian cycle)
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Complexity

Some problems seem to be more difficult to solve efficiently 
than others.

• algorithmic techniques which work to speed up some 
problems don't work for others
– e.g. greedy vs dynamic programming vs recursive backtracking
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Complexity

Are there some problems which take fundamentally longer 
to solve than others, or have we just not been clever 
enough yet to find an efficient solution?
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Famous Complexity Classes

P – decision problems solvable by a deterministic Turing 
machine in polynomial time

NP – decision problems verifiable by a deterministic Turing 
machine in polynomial time

FP – function problems solvable by a deterministic Turing 
machine in polynomial time

FNP – function problems verifiable by a deterministic Turing 
machine in polynomial time
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Decision Problems vs Function Problems

Decision problems are problems where the result is a 
yes/no answer.

– e.g. is there a solution to the 0-1 knapsack problem with total 
weight ≤ W and total value ≥ V?

Function problems compute the result of a function.
– e.g. 0-1 knapsack problem: maximize the total value such that 

the total weight ≤ W

Observation – 
• a function problem can be solved efficiently given a black box for 

the corresponding decision problem
– “efficiently” = logarithmic number of steps

• use one-sided binary search
(one-sided binary search for knapsack means trying V = 2i for i = 0, 1, 2, … 
until the answers are different for successive values of i, then repeating the 
process within the interval found to find a smaller interval, and so forth)
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Turing Machines

A Turing machine is a theoretical machine consisting of:
– an infinite tape divided into cells
– a head that can read and write symbols on the tape, and move 

one cell left or right
– a current state, which is one of a finite number of possible states
– a finite table which, given a current state and symbol on the 

tape, specifies an action (erase or write symbol), a movement 
(left, right, or stay), and a new state

http://www.nikoloplakis.gr/



  

 

CPSC 327: Data Structures and Algorithms  •  Spring 2025 37

Deterministic vs Nondeterministic

A deterministic Turing machine has at most one rule that 
applies to a given state and symbol.

A nondeterministic Turing machine may have multiple rules 
that apply to a given state and symbol.
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Famous Complexity Classes

P – solvable by a deterministic Turing machine in 
polynomial time
NP – verifiable by a deterministic Turing machine in 
polynomial time

– alternatively, solvable by a nondeterministic Turing machine in 
polynomial time

Key points –
• for NP, technically it is only “yes” solutions that are 

polynomial-time verifiable

• in both cases, there are at most a polynomial number of 
choices to make in order to generate the solution
– for each choice – 

• deterministic has rules to pick the right alternative
• nondeterministic can be thought of as correctly guessing the right 

alternative

a “yes” answer requires only a single instance that 
works (and is checkable in polynomial time)
a “no” answer requires showing that no instance 
works
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Famous Complexity Classes

• does NP include P?
– yes – if you can solve a problem in polynomial time, you can 

always verify a possible solution by computing the solution 
yourself and comparing

• are there problems in NP that aren't in P?
– probably
– (proving this one way or the other will get you fame and a million 

dollars)

• are there problems that aren't in NP?
– yes e.g. function problems (NP is only decision problems), the 

halting problem (undecidable)

that is, is every problem in P also in NP?
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Famous Complexity Classes

P – decision problems solvable by a deterministic Turing 
machine in polynomial time

NP – decision problems verifiable by a deterministic Turing 
machine in polynomial time

FP – function problems solvable by a deterministic Turing 
machine in polynomial time

FNP – function problems verifiable by a deterministic Turing 
machine in polynomial time
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Famous Complexity Classes

• does FNP contain FP?
– yes

• are there problems in FNP that aren't in FP?
– probably (for the same reason as there are probably problems in NP 

not in P)

• are there problems that aren't in FNP?
– yes – e.g. enumeration tasks (solution size can be exponential)
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Famous Complexity Classes

• is FP easier or harder than P? 
– no – each can be used a black box to efficiently solve the other 

problem
• the solution to the FP version can be used directly to answer the P 

version's question
• the P version can be used as a black box to find the FP solution in 

polynomial time using one-sided binary search

• is FNP easier or harder than NP? 
– [Bellare, Goldwasser 1994] under certain assumptions, there are 

FNP problems that are harder than their corresponding NP 
problems

A can't be easier than B if A can be used to efficiently solve B

i.e. there seem to be problems in FNP where a solution to the 
NP version can't be used to efficiently solve the FNP version
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Determining Complexity

Reductions are useful for making arguments about 
complexity.

Let A be a problem with a polynomial-time reduction to B. 
– i.e. polynomial time to turn an instance of A into an instance of B, 

and polynomial time to turn a solution for B into a solution for A

Then B is at least as hard as A.
Why?

– if B has an efficient algorithm, A can be solved efficiently via the 
reduction

– if B doesn't have an efficient algorithm, it may still be possible to 
solve A efficiently using a different approach – we don't know

easy/hard has to do with 
efficiency of solution
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the convex hull of a set 
of points is the shape of 
a rubber band stretched 
around those points

Reductions for Lower Bounds

Sorting can be reduced to convex hull – 
• for each element i to be sorted, create a 

point (i,i2)
• compute the convex hull of the points

– (using an algorithm that outputs the hull 
points in cyclic order)

• read points on the hull from left to right, 
starting with the leftmost point in the hull
– this is the sorted order of the elements

http://www.cs.umd.edu/class/fall2014/cmsc754/Lects/lect04.pdf
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Reductions for Lower Bounds

Sorting can be reduced to convex hull – 
• for each element i, create a point (i,i2)
• compute the convex hull

– (using an algorithm that outputs the hull                                  
points in cyclic order)

• read points on the hull from left to right,                      
starting with the leftmost point in the hull

Since comparison-based sorting is known to take Ω(n log n) 
time, the ?? step cannot be faster than n log n or else we'd 
have a better algorithm for sorting using convex hull.

→ convex hull (if the points on the hull are output in cyclic order) 
is Ω(n log n)

O(n)

O(n)

O(??)
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Completeness

Within a class, the complete problems are the hardest – if 
you can solve a complete problem, you can solve every 
problem in the class.

• P-complete – set of problems in P such that every other 
problem in P is polynomial-time reducible to one in the set
– these are problems believed to be “inherently sequential” i.e. a 

parallel computer would not significantly speed them up

• NP-complete – set of problems in NP such that every 
other problem in NP is polynomial-time reducible to one in 
the set
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Karp's 21 NP-Complete Problems

One of the first demonstrations that many common 
computational problems are computationally intractable.  
(1972)

Richard Karp, 
1935-

American 
computer scientist

known for work in 
computer science, 
combinatorial 
algorithms, operations 
research, 
bioinformatics
• Held-Karp algorithm – TSP 
• Edmonds-Karp algorithm – 

max flow
• 21 NP-complete problems
• Hopcroft-Karp algorithm – 

matchings in bipartite graphs
• Karp-Lipton theorem – 

complexity result
• Rabin-Karp string search 

algorithm

1985 Turing Award for 
contributions to the 
theory of NP-
completeness CPSC 327: Data Structures and Algorithms  •  Spring 2025 48

Karp's 21 NP-Complete Problems

clique is there a set of k vertices in the graph such that every vertex in 
the set is connected to every other vertex in the set?

clique cover can the graph be partitioned into k cliques?

vertex cover is there a set of k vertices in the graph such that every edge has 
at least one endpoint in the set?

chromatic number can the graph be colored with k colors?
feedback node 
set

is there a set of k vertices in an undirected graph whose removal 
leaves the graph without cycles?

feedback arc set is there a set of k edges in a directed graph whose removal 
leaves the graph without directed cycles?

directed 
hamiltonian cycle is there a directed/undirected cycle which visits every vertex 

exactly once?undirected 
hamiltonian cycle

max cut
can the vertices of a graph be split into two sets so that the sum 
of the weights of the edges between vertices in different sets is 
at most k?

Steiner tree version of MST where additional points may be introduced to 
reduce the overall weight of the tree
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Karp's 21 NP-Complete Problems

CNFSAT is there an assignment of values to make a boolean expression with 
only OR and NOT within a clause and clauses joined by AND true?

3-SAT CNFSAT where there are exactly three variables per clause
binary integer 
programming

linear programming where variables are constrained to the values 0 
or 1

set packing in a collection of sets, is there a group of k that are disjoint?

set covering given a collection of subsets of X, is there a group of k subsets that 
together contain every element of X?

exact cover given a collection of subsets of X, is there a group of those subsets 
such that every element of X is contained in exactly one subset?

hitting set given a collection of subsets of X, is there a subset H of X of size k so 
that every set in the collection contains at least one element of H?

3-dimensional 
matching

given a set of triples (x,y,z) where x ∊ X, y ∊ Y, z ∊ Z, is there a 
collection of triples such that every element of X, Y, and Z occurs 
exactly once?

0-1 knapsack is there a set of items with total weight ≤ W and total value ≥ V?

partition can a set of numbers be split into two parts so that the sums of the 
parts are equal?

job 
sequencing

can a set of jobs be scheduled so that no more than k miss their 
deadlines?


