

CPSC 327: Data Structures and Algorithms • Spring 2020 20

AVL Trees

An AVL tree is a BST + a height balance property:
• for every node, the height of the node's left subtree is no

more than one different from the height of the node's right
subtree

The height balance property ensures that the height of an
AVL tree with n nodes is O(log n).

CPSC 327: Data Structures and Algorithms • Spring 2020 23

Operations on AVL Trees

An AVL tree is a BST, so the find operation is no different.

For insert and remove:
• insert/remove as dictated by the (BST) structural and

ordering rules
• fix up the broken balance property as needed

CPSC 327: Data Structures and Algorithms • Spring 2020 24

Insert

• structural property dictates that insertion only occurs at a
node with fewer than 2 children

• ordering property dictates where

insert 20

no height-balance violations – we're done!

insert 5

height-balance property violated – uh oh!

20

5

9

9

CPSC 327: Data Structures and Algorithms • Spring 2020 25

Remove

• structural property dictates that removal only occurs at a
node with fewer than 2 children
– may need to swap desired element with next larger/smaller in

order to satisfy the structural property

remove 3

swap with 4 and remove
no height-balance violations –
we're done!

remove 9

height-balance property
violated – uh oh!

9

9

9

4

CPSC 327: Data Structures and Algorithms • Spring 2020 26

Restructuring

Both insertion and deletion may break the height balance
property.

Restore it by performing one or more restructuring
operations (or rotations).

CPSC 327: Data Structures and Algorithms • Spring 2020 27

Restructuring

5

9

let z be the first unbalanced node (working up the
tree from the point of insertion/deletion)

let y be z's tallest child

let x be y's tallest child

5

9

relabel x, y, z as a, b, c according to their correct
sorted order

label the other subtree children of a, b, c as T1,
T2, T3, T4 according to their correct sorted order

z

y

x

a

c

b

T1

T2
T3

T4

rearrange as shown:

b

a c

T1 T2 T3 T4

CPSC 327: Data Structures and Algorithms • Spring 2020 28

Restructuring

5

9

a

c

b

T1

T2
T3

T4

rearrange as shown:

b

a c

T1 T2 T3 T4

9

4

3 6

5 71

height balance property restored!

CPSC 327: Data Structures and Algorithms • Spring 2020 29

Restructuring

How many restructuring operations are needed?

Observation.
• restructuring reduces the height of a subtree

Insertion –
• insertion increases the height of a subtree, so one

restructuring is sufficient to shorten it and restore balance

Removal –
• removal decreases the height of a subtree, so one

restructuring may only result in pushing the imbalance
higher up the tree

• O(log n) restructurings may be required

CPSC 327: Data Structures and Algorithms • Spring 2020 30

Running Time

• initial BST insert/remove – O(log n)
• number of nodes to check for balance – O(log n)
• time to perform a balance check – O(1) if height info is

stored for each node
• time to perform one restructuring – O(1)
• number of restructurings performed – 1 for insertion,

O(log n) for removal
• time to update stored balance information – O(log n)

nodes affected, O(1) per

Total time: O(log n) for insert/remove

