Chapter 1

Big-Oh From Code

e We grow an array by increasing its length by 1 each time.

double[] numbers = new double[1];
for (int i =0 ; i <n ; i++) {
if (i >= numbers.length) {
numbers = Arrays.copyOf (numbers,numbers.length+1);
}
numbers[i] = Math.random();

}

Outside (before) the loop is just simple operations, so that contributes ©(1).

For the loop, observe that everything in the loop body is ©(1) except Arrays.copy0f (), which we
expect to take time proportional of the number of elements copied i.e. ©(numbers.length). The total
amount of time taken for the loop is the sum of the time taken by each iteration. Step through the
code: on the first iteration ¢ = 0, numbers.length = 1, and the if condition is false so nothing is
copied and numbers.length doesn’t change. On the next iteration ¢ = 1, numbers.length = 1, and
the if condition is true so numbers is copied and its length increases by 1. And so forth:

{ 0 1 2 3 4 5 .o on—1
numbers.length 1 1 2 3 4 5 .o n—1
work to copy 0 1 2 3 4 5 oo o n—1
other work o(1) ©e() e@1) o1 o1 e@1 ... o1

n—1
The total time taken is the sum of the “work to copy” and “other work” entries: . j+ n©(1).
j=0
Using the sums table gives ©(n?) for the sum, which is faster-growing than n, so the overall running
time is O(n?).

CHAPTER 1. BIG-OH FROM CODE

e We grow an array by doubling its length each time.

double[] numbers = new double[1];
for (int 1 =0 ; i < n ; i++) {
if (i >= numbers.length) {
numbers = Arrays.copyOf (numbers, 2*numbers.length) ;
}
numbers[i] = Math.random();

}

Outside (before) the loop is just simple operations, so that contributes ©(1).

For the loop, observe that everything in the loop body is ©(1) except Arrays.copy0f (), which we
expect to take time proportional of the number of elements copied i.e. ©(numbers.length). The total
amount of time taken for the loop is the sum of the time taken by each iteration. Step through the
code: on the first iteration ¢ = 0, numbers.length = 1, and the if condition is false so nothing is
copied and numbers.length doesn’t change. On the next iteration ¢ = 1, numbers.length = 1, and
the if condition is true so numbers is copied and its length is doubled. And so forth:

i 0 1 2 3 4 5 6 7 8 9 n—1
numbers.length 1 1 2 4 4 8 8 8 8 16

work to copy 0 1 2 0 4 0 0 0 8 e

other work (1) ©e(1) o) ©e@1) o) o1 e o1 e o1 ... o

The total time taken is the sum of the “work to copy” and “other work” entries. For “work to copy”,
observe that it is a sum of powers of 2: > 27. But what’s the upper limit for the sum? Assume n

7=0
is a power of 2, so the last time the array grows and is copied is when 29 = n/2. Solving for j yields
7 =logn — 1.
logn—1
Thus, the total time taken is Y. 27 +nO(1). This is a “geometric increase” sum, so using the sums
j=0

table yields ©(2/°97~1) + nO(1). 2!°9"~1 simplifies to n/2, so the total time is O(n).

[This means that over the time it takes to insert n elements, doubling the array results in only O(n)
additional work in total — while the worst case behavior of a single insert is O(n), when the growing
time is spread over a series of n operations (a process called amortized analysis) each insert is effectively

o(1).)

February 1, 2025 3

CHAPTER 1. BIG-OH FROM CODE

e void hanoi (int n, int src, int dst, int spare) {
if (n==1) {
System.out.println(\move disk from \+src+" to \+dst);
} else {
hanoi(n-1,src,spare,dst);
System.out.println(\move disk from \+src+" to \+dst);
hanoi(n-1,spare,dst,src);
}
}

Let T'(n) be the time for hanoi(n,...). Then
T(1) =6e(1)

For the recursive case, the time taken is the time for two hanoi(n-1,...) calls plus ©(1) additional
time — the only non-simple steps in the body of hanoi are the recursive calls. This means

T(n)=2T(n—1)+06(1)
Using the recurrence relations table gives ©(a™/?) = ©(2").

Mergesort.

void mergesort (int[] arr, int left, int right) {
if (right > left) {
int middle = (left+right)/2;
mergesort (arr,left,middle);
mergesort (arr,middle+1,right);
merge(arr,left,middle,right);
}
}

void merge (int[] arr, int left, int middle, int right) {
int[] merged = new int[right-left+1];
int int i = left, j = middle+l, k = O;
for (; i <= middle && j <= right ; k++) {
if (arrl[i] < arr[j]) { merged[k] = arr[i]; i++; }
else { merged[k] = arr[jl; j++; }
}
for (; i <= middle ; i++, k++) {
merged[k] = arr[i];
}
for (; j <= right ; j++, k+t+) {
merged[k] = arr[il;
}
System.arraycopy(merged,0,arr,left,merged.length);
}

For mergesort, the base case is ©(1) (only the if condition is checked). For the recursive case
T(n)=2T(n/2) +O(n)

where n = right — left + 1. (right and left denote the range of arr being sorted.) For merge,
observe that every loop iteration increments either i or j and that i counts from left to middle
(inclusive) and j counts from middle+1 to right (inclusive) — thus the total work for the three loops
is O(n). System.arraycopy is also ©(n) making merge ©(n) overall.

Using the recurrence relations table gives T'(n) = ©(nlogn).

February 1, 2025 4

