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7.3 Callers On Hold
Sections (like this one) which marked with a vertical line on the left side are commentary — discussions
about the algorithm development process that wouldn’t be part of a writeup.

Establish the problem.

� Specifications.

n people are on hold, waiting for a single tech support operator. Let ti be the time it will take to solve
person i’s problem. (The ti times are known in advance.) In what order should the operator handle
the calls in order to minimize the total waiting time? (The total waiting time is the sum of the times
each person has to wait until the operator answers her call.)

Input: n people with the time ti to handle person i’s call

Output: an ordering of the n people

Legal solution: the ordering includes every caller exactly once

Optimization goal: minimize total waiting time

� Examples.

Identify avenues of attack.

� Targets.

� Approach. Series of choices.

(This was dictated.)

� Paradigms and patterns.

Paradigm: greedy.

(Again, this was dictated.)

Identify the flavor, if applicable. Consider how this problem fits into each applicable pattern.

This is an ordering problem.

Process output: repeatedly determine the next call to answer.

Process input: figure out where in the ordering to answer the current call.

� The series of choices.

Process output seems much easier here.

The next call to answer.

� Greedy choices and counterexamples.

To identify the possible greedy choices, identify what information there is to work with.

The only information we have about callers is the length of the call ti.

The only plausible options for picking the next call to answer is to pick the shortest remaining call.

Picking the longest remaining call doesn’t make sense because everyone else will have to wait for
that call, and answering a shorter call instead reduces all those wait times. And that argument
illustrates why picking any call doesn’t work — the order does matter.
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Define the algorithm.

� Main steps.

repeatedly

answer the shortest call remaining

� Exit condition.

When all the calls have been answered.

� Setup.

Nothing to do.

� Wrapup.

Nothing to do — the ordering is the desired result.

� Special cases.

If two calls are the same length, either one can be answered first.

� Algorithm.

n people are on hold, waiting for a single tech support operator. In what order should the operator
handle the calls in order to minimize the total waiting time? (The total waiting time is the sum of the
times each person has to wait until the operator answers her call.)

Input: n people with the time ti to handle person i’s call

Output: an ordering of the n people

repeatedly

answer the shortest call remaining (pick any such call if there’s a tie)

Show termination and correctness.

� Termination.

– Measure of progress.

The number of calls answered.

– Making progress.

Another call is answered in each iteration.

– The end is reached.

Since calls are not answered twice, eventually all will have been answered.

� Correctness.

– Loop invariant.

The general pattern is

After k iterations, ...

The loop invariant needs to address both legality and optimality. For optimality, try a
staying ahead argument. Since the task is to find an ordering, we are not free to consider
the optimal’s elements in any order — the apples-to-apples task is compare the first k calls
in the algorithm’s ordering to the first k calls in the optimal’s ordering.

But what should the staying ahead argument be? It’s tempting to state something about
the total waiting time so far with the k calls that have been answered, but keep in mind that
to establish and maintain the invariant we need to make an argument involving the current
call picked — but the total waiting time for the first k callers has nothing to do with the
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kth call. Instead we need to consider the impact of the kth call on the waiting times on the
callers after caller k.

After k calls have been answered, the total waiting time due to the k calls in the algorithm’s
solution is no bigger than the total waiting time due to the first k callers in the optimal solution.

“No bigger” because the goal is to minimize the total waiting time, so smaller is ahead.

– Establish the loop invariant.

Show for k = 1 because k = 0 is too trivial — it doesn’t even involve the greedy choice.

The total waiting time due to the algorithm’s first call is (n−1)tA1 and the total waiting time due
to the algorithm’s first call is (n − 1)tO1 . Since the algorithm picks the shortest call, tA1 ≤ tO1

and thus (n− 1)tA1
≤ (n− 1)tO1

.

– Maintain the loop invariant.

Assume that after k calls have been answered, the total waiting time due to the k calls in the
algorithm’s solution is no bigger than the total waiting time due to the first k callers in the optimal
solution.

Show that after k + 1 calls have been answered, the total waiting time due to the k + 1 calls in
the algorithm’s solution is no bigger than the total waiting time due to the first k + 1 callers in
the optimal solution.

Assume this is the step where things go wrong: after k + 1 calls have been answered, the total
waiting time due to the k+1 calls in the algorithm’s solution is longer than the total waiting time
due to the first k + 1 callers in the optimal solution.

Let Ai be the algorithm’s ith call and Oi be the optimal’s ith call. Also let TAj be the total
waiting time due to the first j calls in the algorithm’s solution, and TOj be the total waiting time
due to the first j calls in an optimal solution.

The invariant gives us that TAk
≤ TOk

. If the algorithm falls behind here — TAk+1
> TOk+1

— it
must be the case that the algorithm’s (k + 1)st call is longer than the optimal’s (k + 1)st call —
tAk+1

> tOk+1
— because the same number of people have to wait for call k+ 1 in both orderings.

To simplify the discussion for a moment, let’s assume that no two calls have the same length.
Since the algorithm always picks the shortest remaining call, there are exactly k calls shorter than
call Ak+1. The optimal’s call k + 1 is one of those calls because tAk+1

> tOk+1
, but that means

one of the optimal’s first k calls must be longer than Ak+1 (and thus also Ok+1) — the optimal
can’t have k + 1 calls all shorter than Ak+1.

The idea of the contradiction is to show that there’s must then be something shorter later in
the optimal’s solution that could be swapped with the longer call, reducing the total waiting
time in the optimal solution and meaning that it isn’t optimal.

Let’s call that longer call Oj (j ≤ k). The total waiting time due to call Oj is tOj
(n − j) and

the total waiting time due to call Ok+1 is tOk+1
(n − k − 1). Since j ≤ k, n − j > n − k − 1 and

swapping calls Ok+1 and Oj in the optimal’s ordering would result in a lower total waiting time:

tOk+1
(n− j) + tOj (n− k − 1)

?
< tOj (n− j) + tOk+1

(n− k − 1)

tOk+1
(n− j)− tOk+1

(n− k − 1)
?
< tOj (n− j)− tOj (n− k − 1)

tOk+1
(k − j + 1)

?
< tOj

(k − j + 1)

which is true because tOj
> tAk+1

> tOk+1
.

This means that the optimal’s ordering (with Oj before Ok+1) wasn’t optimal, so the initial (and
only) assumption that TAk+1

> TOk+1
must be false.

But what if calls can have the same length? Then there are at most k calls shorter than Ak+1;
if there were more, one of them would have been picked instead of Ak+1. (There could be fewer
than k because several calls might be the same length as Ak+1.) That means that there is at
least one call Oj (j ≤ k) in the optimal’s solution where tOj

≥ tAk+1
. Because tAk+1

> tOk+1
and
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tOj > tOk+1
, the same reasoning as above means that swapping Oj and Ok+1 would reduce the

total waiting time in the optimal solution, so the optimal solution isn’t optimal.

Since the assumption that this is the step where the algorithm falls behind led to the conclusion
that the optimal solution isn’t optimal, it must not be the case that the algorithm falls behind
and the loop invariant holds.

– Final answer.
Show that the setup + main steps + wrapup yields the final answer. Since there aren’t any
setup or wrapup steps, show that the loop invariant plus the exit condition results in the
final answer.

The loop invariant gives us that after k calls have been answered, the total waiting time due to
the k calls in the algorithm’s solution is no bigger than the total waiting time due to the first k
callers in the optimal solution. The exit condition is that all n calls have been answered — if the
algorithm’s solution is still no worse than the optimal after all n calls, it must be optimal.

Determine efficiency.

� Implementation.

Sort the calls by increasing length — that’s the ordering desired.

� Time and space.

O(n log n) to sort the calls.

� Room for improvement.

The algorithm is just sorting — hard to be O(n log n) for that!


