

CPSC 327: Data Structures and Algorithms • Spring 2025 87

HW 11

• give the steps of the dynamic programming process from
class, not just a statement of the algorithm or a narrative
account of your reasoning process

• only #2 was graded (or a different problem if you didn’t hand in #2)
– review those comments and consider their application to the other

problems

– establish the problem
• specifications
• examples

– identify avenues of
attack

• targets
• paradigms and

patterns
• the series of choices

– show termination and
correctness

• termination
• correctness: establish the

base case, show the main
case, final answer

– determine efficiency
• implementation
• time and space
• room for improvement

– define the algorithm
• size
• generalize / define

subproblems: partial
solution, alternatives,
subproblem,
memoization

• base case(s)
• main case
• top level: initial

subproblem, setup,
wrapup

• special cases
• algorithm

CPSC 327: Data Structures and Algorithms • Spring 2025 88

HW 11

• #2 – the subproblem input in this case depends on the
series of choices
– process input – line break now or not?

• the subproblem also requires the length of current line or the space left on
current line – necessary for computing the cost (and for knowing if not
breaking now is an option)

• base case cost >= 0 because it is necessary to consider the cost of
spaces on the current line if there are words on it

– produce output – where is the next line break?
• the subproblem only needs the remaining words because this decision is

about the entire contents of the line – the cost of the space left can be
computed from the length of the words between the current point and the
next line break

• base case cost is 0 because there are no words left to go on a line (the
current line is empty)

CPSC 327: Data Structures and Algorithms • Spring 2025 89

HW 11

• avoid unnecessary work – even though the result may still
be polynomial, it could be a better polynomial…
– e.g. a computeLineLength(i,j) function to compute the cost

of the remaining spaces for a line containing words i through j is
a nice idea for organization, but consider its context

• this adds up the lengths of words i..i, then i..i+1, i..i+2, i..i+3, … – a lot of
repeated computation

• instead incrementally add the length of word j to the running total in each
iteration

for j = i to n-1 do
 length computeLineLength(i,j)←
 …

