Recursive Algorithms Solving Recurrence Relations

To solve a problem of size n — T(n) = a T(n-b) + f(n) where f(n) = ©(n° log® n)
split the size n problem into one or more smaller problems
of the same kind Cases are based on the number of subproblems and f(n).

recursively solve the smaller problems
compute the solution for the size n problem from the
solution of the smaller problems a f(n) behavior solution

base case dominates
(too many leaves)

1 =1 all levels are important T(n) = ©(n f(n))

>1 any T(n) = ©(a™)

CPSC 327: Data Structures and Algorithms + Spring 2022 2 CPSC 327: Data Structures and Algorithms « Spring 2022 4

Running Time for Recursive Algorithms Solving Recurrence Relations

Let T(n) be the running time to solve a problem of size n. T(n) = a T(n/b) + f(n) where f(n) = ©(n° log® n)
REGUEIE EOINTE (el 19 PEE O e o i Cases are based on the relationship between the number of
split off b elements to create smaller problems subproblems, the problem size, and f(n).

T(n) = a T(n-b) + f(n) where f(n) = 0 or ©(n° log® n)

(log a)/
L . 1 havi luti
divide into subproblems of size n/b (33 f) d behavior sotution
T(n) = a T(n/b) + f(n) where ©(n° log® n) top level dominates - more work

< any splitting/combining than in subproblems T(n) = ©(f(n))

A root too expensive

a = 1 is the number of smaller problems (— :

f(n) is th K lit the si | . I | all levels are important - log n steps to

(n) is the work to split the size n problem into smaller problems = > -1 get to base case, and roughly same T(n) = ©(f(n) log n)
and to combine the solutions to the smaller problems into the amount of work in each level

solution for the size n problem _ < -1 base cases dominate - so many

subproblems that taking care of all the _ (log a)/(log b)
> any base cases is more work than T(n) = 8(n)
splitting/combining (too many leaves)

CPSC 327: Data Structures and Algorithms + Spring 2022 3 U ——

