Database Applications

Two-Tier Architecture

I Server

clent

O'Reilly, MySQL & mSQL
The database is the server.

stores data
executes queries

The application that uses the database is the client.

does everything else — Ul/presentation, sends queries/processes

results, carries out business logic

CPSC 343: Database Theory and Practice « Fall 2024

Database Applications

the database provides data storage
the database application does something with the data

the role of the database varies somewhat depending on
the type of application
for a Java application, database provides storage across
application instances
data can be stored in memory while the program runs; the database
provides persistent storage and allows sharing between separate
instances
for a web application, database provides storage across
operations
HTTP is a stateless protocol, though sessions allow for persistence
between requests

CPSC 343: Database Theory and Practice « Fall 2024

Three-Tier Architecture

presentation tier provides the user
interface
handles user interaction
displays output
acquires input
commonly implemented over the web, in
which case it is also known as the web

_server tier - _ % ceriicror L R
middle or application tier provides __—» . = S . TeeEe
the application logic | T
handles the rules, constraints, logic of the gk
program QUERY asLES
can integrate data from multiple sources \ aes
processes data to provide a response to the
client
data management tier stores the data —» =
typically a database, in which case it is also Storage
known as the database tier Daiabase
stores data https://en.wikipedia.org/wiki/Multitier_architecture

q)
executes queries 4

Three-Tier Architecture Technologies

Advantages. two-tier three-tier
heterogeneous systems

allows different platforms, technologies, and components within each client-server architecture a traditional approach for web

layer o applications is LAMP
modularity in this course OS — Linux

presentation (Ul), business logic, and data management are separate E/Ia)./tgtéal_s e (server) — prelfentatlonHt'lrel\;II: épsaghe

each part can be developed, maintained, and tested independently lient — J licati (s =
. clien ava application data management tier — MySQL
integrated data access (DBMS)

utilizes free and open-

application layer (middle tier) allows for centralized management of source software (¥) application tier — PHP (server-
data and transparent handling of multiple database systems side scripting and programming
scalability TS
tiers can be scaled independently as demand dictates utilizes free and open-source
. software (*)
thin clients i]
client is responsible only for presentation (Ul) () not necessarily free for all variants for other operating
reduces the hardware requirements for clients, allowing more devices uses e.g. commercial use systems (WAMP, MAMP) and
access - can substitute other
minimizes client-side configuration and management 5 CPSC 343; Database Theory and Practice + Fall 2024 components
Communicating With Databases Communicating With Databases
For both web and Java applications, communication with Steps — _
the database is done through a library of routines. establish a connection

the library is particular to both the application to a particular database, host, and port as a particular user
programming language and the database vendor send queries _
for PHP and MySQL, we are using MySOLi one-time queries without user input

Java provides a standard API (JDBC) with different backends for GLiies DSEpetEliie) U fsll
different vendors (we are using the MySQL one) repeated similar queries

process results
close connection

can be repeated using
the same connection

error checking
should be done at each step in the process

should avoid publicly revealing details of the database schema in
error messages (not useful to users, can be helpful to attackers)

CPSC 343: Database Theory and Practice « Fall 2024 7 CPSC 343: Database Theory and Practice « Fall 2024 8

Key Points Web — HTML/PHP

[<7php

[<html> // establish a connection to the database blish
[chead> $link = mysqli_connect("172.21.7.83","guest", "quest", "ex library"); } establish
<title=Book Loans</titlex copnection

* how to do each of the steps (including error handling) /e [end the auery to the database

Squery =

. 3 [<body> “SELECT B.Name,BK.Title,BA.Author_name,LB.Branch_name,BL.Due_date ".
depends on the partlcular I|brary / APl <h1>Book Loans</h1> "FROM BOOK_LOANS BL NATURAL JOIN BORROWER B NATURAL JOIN BOOK BK ".
“NATURAL JOIN BOOK AUTHORS BA ".

"JOIN LIBRARY_BRANCH LB ON LB.Branch_id = BL.Branch_id ".
"ORDER BY Name, Due_date";

° prepared statements sresult = mysqli_query(slink,squery); } send [query
° S|mp|e query /1 process the resulss

<p>There were <7php print mysqli num_rows($result); 7> results found.</p>

O SE‘CUI’Ity <table border-1 cellpadding=5>
l<tr=>
user accounts <theName</th=

<th>Title</th>

handling passwords <thoAuthor</ th>

<th>Library Branch</th>

SQL injection and other attacks foroue pates/the

</tr>

l<7php
while ($row = mysqli fetch assoc(sresult)) { process results
7>

<tr>

<td><7php print $row["Name"]; 7></td> <?php
<td><7php print $row['Title'l; 7=</td> // free the results
<td><7php print $row["Author name"]; ?s></td> mysqli_free result(sresult);

<td><7php print $row["Branch_name'l; ?></td>)
<td><?php print $row["Due date"l; ?></td> // close the database connection
</t mysqli_close($link)
l<2php B
e ———— N close
7 </body> connection
CPSC 343: Database Theory and Practice + Fall 2024 9 CPSC 343: Database Theory and Practice * Fall {c/table> </html> i

Java — JDBC Prepared Statements

* simple query

SELECT *
// change the following as needed if you are connecting from off campus FROM SAILOR NATURAL JOIN
String host = "172.21.7.83"; // DB server host
int port = 3386; // MySQL runs on port 3306 RESERVATION

. WHERE Sname='Dustin’
String db = "ex library"; // name of DB to use
4 SELECT *

// establish a connection FROM SAILOR NATURAL JO|N
// useSSL=false turns off SSL and prevents warning messages
String url = "jdbc:mysql://" + host + ":" + port + "/" + db + "?user=" + user + "&password=" + passwnrd} RESERVAT|ON

+ "&usessL=false";) . —1 TAl
Connection connection = DriverManager.getConnection(url); establish connection WHERE Sname="Horatio

these steps depend

// send guery and process results

- : . only on the structure
Statement stmt = tion.createStatement() ;

Resultset result EUZQ;E;:gcﬂ:gu:ry?ggigﬂ * FROM BOOK NATURAL JOIN BOOKﬁAUTHDRS"];} cendlquery When a query Is sent to the DBMS — of the query, not
System.out.println("the books are: ");

or (; result.next(); ° i ifi |
f Stiing tlt{e = Fél\'ﬂ].tfgetstring(“Title"]; the teXt IS parsed’ the Syntax specitic values

process results

String author = result.getString(*Author nane”); checked, and the names validated using a prepared

System.out.println("\t" + title + " by " + author);

} . . statement allows this
* aquery tree is built work to be cached

St s I }close connection * an execution plan is developed prepared statements

System.out.println("something went wrong: " + e.getMessage());

// close the connection

=

B * the plan is executed also provide
protection against .

CPSC 343: Database Theory and Practice « Fall 2024 1 CPSC 343: Database Theory and Practice « Fall 2024 SQ Li nj ection

Security — User Accounts

users authenticate to the DBMS
each user has a separate DBMS account
can leverage the DBMS security mechanisms
can't bypass security by bypassing application

“one big application user” model — users authenticate to
the application

database stores authentication information (e.g. username and
password)

application uses a single (highly-privileged) DBMS account when
it connects to the DB

application can manage users and privileges without needing the
powerful GRANT privilege

proxy users
one DBMS account per user role rather than per user
DBMS accounts can have more targeted privileges
application can manage users

SQL Injection

Security — Password Management

assume that passwords written down can be seen

e.g. values stored in hidden form elements are visible in the
HTML source

e.g. cookies are stored in plaintext on the client side, and are
sent over the network with each request

e.g. sessions do not guarantee that stored info is visible only to
the user that created the session

avoid storing passwords — have user enter interactively
don't hardcode sensitive passwords

only store encrypted passwords

don't store passwords in a publicly accessible place
use a password wallet with a single master password

for web applications, put passwords in a separate configuration
file outside the web root (or use .htaccess to prevent access)

CPSC 343: Database Theory and Practice « Fall 2024 14

SQL Injection

HI, THIS 15 OH DERR —~DID HE | DID YOU REALLY WELL, WEVE LOST THIS

YOUR SON'G SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING SO'E | N A WAY— Rebert'); DROP T HOPE YOURE HAPPY.

(OMPUTER TROUBLE. / TABLE Students;-~ 7 ‘,n

X \ AND T HPE

, s ~OH.YES UTIE “~ YOUVE LEARNED

| ROBRY TABLES, T0 SANMIZE YOUR

" ! E WE CALL HIM. DATABASE INPUTS.

http://xkcd.com/327/

SOL injection is a technique an attacker can use to gain
information or access through queries sent to the database.

The vulnerability comes from incorporating unchecked user
inputs into a query.

CPSC 343: Database Theory and Practice « Fall 2024

Example #1 Splitting the result set into pages ... and making superusers (PostgreSQL)

<?php

$offset = $argv[0];

$query = "SELECT id, name FROM products ORDER BY name LIMIT 28 OFFSET $offset;";
$result = pg_query($conn, $query);

>

Normal users click on the 'next’, 'prev’ links where the Soffset is encoded into the URL. The script expects that the incoming
Soffset is a decimal number. However, what if someone tries to break in by appending a urlencode()'d form of the following to
the URL

a;

insert into pg_shadow(usename, usesysid,usesuper,usecatupd, passwd)
select 'crack', usesysid, 't','t','crack’
from pg_shadow where usename='postgres';

If it happened, then the script would present a superuser access to him. Note that 0; is to supply a valid offset to the original
query and to terminate it.

CPSC 343: Database Theory and Practice « Fall 2024 16

SQL Injection

SQL Injection

Example #2 Listing out articles ... and some passwords (any database server)

<?php

$query = "SELECT id, name, inserted, size FROM products
WHERE size = '$size'";

$result = odbc_exec($conn, $Squery);

>

The static part of the query can be combined with another SELECT statement which reveals all passwords:

union select '1', concat(uname||'-'||passwd) as name, '1971-81-01', '®' from usertable;

If this query (playing with the "and --) were assigned to one of the variables used in Sguery, the query beast awakened.

CPSC 343: Database Theory and Practice « Fall 2024

SQL Injection

Example #3 From resetting a password ... to gaining more privileges (any database server)

<?php
$query = "UPDATE usertable SET pwd='$pwd' WHERE uid='S$uid';";
2>

But a malicious user sumbits the value * or wid like'%admin% to $uid to change the admin's password, or simply sets $pwd to
hehehe’, trusted=100, admin="yes to gain more privileges. Then, the query will be twisted:

<?php

$query = "UPDATE usertable SET pwd='...' WHERE uid="" or uid like '%admin%';";

$query = "UPDATE usertable SET pwd='hehehe', trusted=100, admin='yes' WHERE
S

7>

CPSC 343: Database Theory and Practice « Fall 2024

Security — SQL Injection

Example #4 Attacking the datab hosts operating system (MSSQL Server)

<?php

$query = "SELECT * FROM products WHERE id LIKE '%$prod%'";
$result = mssql_query($query);

7>

o=

f attacker submits the value a%’ exec master..xp_cmdshell ‘net user test testpass /ADD" -- to $prod, then the Squery wil
e

<?php

$query = "SELECT * FROM products

WHERE id LIKE '%a%'

exec master..xp_cmdshell 'net user test testpass /ADD' --%'";
$result = mssql _query($query);

7>

MSSQL Server executes the SQL statements in the batch including a command to add a new user to the local accounts
database. If this application were running as sa and the MSSQLSERVER service is running with sufficient privileges, the
attacker would now have an account with which to access this machine.

CPSC 343: Database Theory and Practice « Fall 2024

* malicious users can exploit the incorporation of raw input
into queries

* to prevent

don't trust user input
 use prepared statements
also more efficient for repeated queries with different values
* interpret table and attribute names rather than including directly
« validate and sanitize input

verify data type, escape problematic characters, put single quotes around all
values (including numbers)

deny access

« principle of least privilege — limit privileges of DB accounts

 use views and stored routines to limit what users can see and manipulate
keep secrets

« don't reveal internals of database (e.g. table names) in error messages or
other public places

CPSC 343: Database Theory and Practice « Fall 2024

Sanitizing Input

escape problematic characters
mysqli real escape string(..)
escapes quotes and other special characters (e.g. \n, \r, \)
addcslashes(..,"% ")
can be used to escape SQL special symbols like % and _
put single quotes around all values, even numeric ones

<?ph
$sailor = addcslashes(mysqli_real escape string($link,

$ POST["sailor"]),"s ");

$query = "SELECT B.Bname,B.Bid,R.Day FROM BOAT B ".
"NATURAL JOIN RESERVATION R NATURAL JOIN ".
"SAILOR S WHERE S.Sname LIKE '".$sailor."%'";
?>

CPSC 343: Database Theory and Practice « Fall 2024

Sanitizing Input

check data type
is array(..), is bool(..), is float(..), is int(..),
is numeric(..), is _object(..), is _scalar(..), is string(..)
PHP also has functions to check for particular types of
characters e.g. alphanumeric, digits, lowercase and uppercase
letters, punctuation, whitespace

<?php
if (is_numeric($sailor)) {
$query = "SELECT B.Bname,B.Bid,R.Day FROM BOAT B ".
"NATURAL JOIN RESERVATION R NATURAL JOIN ".
"SAILOR S WHERE S.Sid='".$sailor."'";
} else {
// error message

77>

CPSC 343: Database Theory and Practice « Fall 2024 23

