

CPSC 343: Database Theory and Practice • Fall 2024 93

Example

To transfer $100 from account 123 to account 456:
• check that the balance of account 123 is at least $100
• deduct $100 from account 123
• add $100 to account 456

What can go wrong?
• simultaneous transfers from account 123 can result in a

negative balance
• a crash or a failure of one of the UPDATEs can result in a

loss of money

IF (SELECT balance FROM ACCOUNT WHERE acctnum=123) >= 100 THEN
 UPDATE ACCOUNT SET balance=balance-100 WHERE acctnum=123;
 UPDATE ACCOUNT SET balance=balance+100 WHERE acctnum=456;
END IF

CPSC 343: Database Theory and Practice • Fall 2024 94

Transactions

Things can go wrong if tasks require multiple steps, and
those steps involve INSERT / DELETE / UPDATE.

• unfortunate interleaving of steps from simultaneous
requests can lead to incorrect or inconsistent database
state

• failure of a step (or a system crash) can lead to incorrect
or inconsistent database state

IF (SELECT balance FROM ACCOUNT WHERE acctnum=123) >= 100 THEN
 UPDATE ACCOUNT SET balance=balance-100 WHERE acctnum=123;
 UPDATE ACCOUNT SET balance=balance+100 WHERE acctnum=456;
END IF

CPSC 343: Database Theory and Practice • Fall 2024 95

Transactions

Serializability refers to the property that tasks must appear
as if one is executed entirely before or after the other.

Atomicity refers to the property that either the whole task is
executed, or none of it.

From the database user's perspective, these properties are
achieved by designating a multi-step task to be a single
transaction.
• SQL standard requires both serializability and atomicity,

but some DBMS may allow relaxations of serializability

CPSC 343: Database Theory and Practice • Fall 2024 96

Transactions

START TRANSACTION
 statements
COMMIT

– COMMIT means that the transaction commits successfully
– changes become permanent

START TRANSACTION
 statements
ROLLBACK

– ROLLBACK aborts the transaction
– any changes made to the DB as part of this transaction are

undone

CPSC 343: Database Theory and Practice • Fall 2024 97

Using Rollback

Two common scenarios –

• in a stored procedure, define an exit handler (invoked
when an error occurs) which executes a rollback

• in a database application, check error codes or otherwise
programmatically determine that an error occurred and
issue a rollback as needed

CPSC 343: Database Theory and Practice • Fall 2024 98

Example

CREATE PROCEDURE DeleteSailorByName2
 (IN delname VARCHAR(45))
BEGIN
 DECLARE delsid INT;
 DECLARE EXIT HANDLER FOR SQLSTATE '42000'
 BEGIN SELECT 'too many sailors!'; END;
 DECLARE EXIT HANDLER FOR SQLEXCEPTION, SQLWARNING
 BEGIN ROLLBACK; END;

 START TRANSACTION;

 SELECT Sid FROM SAILOR
 WHERE Sname=delname
 INTO delsid;

 DELETE FROM RESERVATION WHERE Sid=delsid;
 DELETE FROM SAILOR WHERE Sid=delsid;

 COMMIT;
END

delete a sailor by name, doing nothing if
there is more than one sailor with the name

CPSC 343: Database Theory and Practice • Fall 2024 99

Transactions

Serializability and atomicity has a cost.
• overhead of the locking mechanism used to prevent

simultaneous access
• loss of concurrency because tasks are executed one at a

time

Not enforcing serializability and atomicity also has a cost.
• incorrect and inconsistent database state due to dirty

reads of data modified by a not-yet-committed operation
• inconsistent results due to non-repeatable reads of data

modified by a committed operation

But such reads are not always harmful, and preventing
problems does not always require full mutual exclusion.

CPSC 343: Database Theory and Practice • Fall 2024 102

Tools

• isolation levels allow relaxation of serializability for
performance gains
– SQL defines four isolation levels

• locking reads allow targeted mutual exclusion at lower
isolation levels

CPSC 343: Database Theory and Practice • Fall 2024 103

Isolation Levels

• SERIALIZABLE

– SELECT locks so rows accessed so no other transaction can
modify them until this transaction completes

– blocks if another transaction has uncommitted changes
– dirty reads are not permitted
– reads are repeatable

– necessary when data integrity is essential (such as in banking
transactions) but

• there is a significant performance cost
• applications must handle retrying transactions that fail

CPSC 343: Database Theory and Practice • Fall 2024 104

Isolation Levels

• READ UNCOMMITTED

– transaction sees what has happened in other transactions, even
if not committed

– repeated SELECTs may return different data
– dirty reads are permitted
– reads are non-repeatable

– only appropriate in limited circumstances
• e.g. only working with data that won’t be modified
• e.g. computing summary statistics where complete accuracy isn’t required

and the volume of processing is so high that the performance difference is
significant

– not all DBMSes support

CPSC 343: Database Theory and Practice • Fall 2024 105

Isolation Levels

• READ COMMITTED

– (only) committed updates are visible in this transaction
– repeated SELECTs may return different data
– dirty reads are not permitted
– reads are non-repeatable

– appropriate when up-to-date data is needed with each SELECT
• e.g. periodic reports or inventory lists

– the default in some DBMSes

CPSC 343: Database Theory and Practice • Fall 2024 106

Isolation Levels

• REPEATABLE READ

– all reads within a transaction are consistent – reads are
repeatable

– first SELECT establishes a snapshot used by all subsequent
SELECTs [MySQL implementation]

• if another transaction inserts, deletes, or updates a row after that point, it
won't be seen (even if committed)

– DELETE or UPDATE may affect rows committed by another
transaction, and those changes become visible

– dirty reads are not permitted
– applications may need to handle retrying failed transactions (not

in MySQL)

– appropriate when a complex calculation needs consistent results
from multiple SELECTs

– default in MySQL

CPSC 343: Database Theory and Practice • Fall 2024 107

Isolation Levels

SET [GLOBAL | SESSION]
 TRANSACTION ISOLATION LEVEL level

– GLOBAL sets for all subsequent sessions (but not the current
one)

• requires admin privileges to use

– SESSION sets for all subsequent transactions in the current
session

– nothing sets for just the next transaction

See the current session isolation level with

 SELECT @@transaction_ISOLATION

CPSC 343: Database Theory and Practice • Fall 2024 108

Locking Reads

• a negative balance can result if another transaction
modifies account 123’s balance between the SELECT and
UPDATE
– SERIALIZABLE prevents this problem, by locking the rows the
SELECT accesses

– REPEATABLE READ does not

• SELECT … FOR SHARE sets a shared lock on the rows read
– other transactions can read those rows but not modify them

• SELECT … FOR UPDATE locks the rows read
– blocks locking reads and modifications by other transactions

IF (SELECT balance FROM ACCOUNT WHERE acctnum=123) >= 100 THEN
 UPDATE ACCOUNT SET balance=balance-100 WHERE acctnum=123;
 UPDATE ACCOUNT SET balance=balance+100 WHERE acctnum=456;
END IF

CPSC 343: Database Theory and Practice • Fall 2024 109

Deadlock

Deadlock occurs when two or more transactions are
blocked waiting to acquire a lock held by one of the others.

• DBMS detects deadlock and terminates and rolls back at
least one of the transactions involved
– application may need to retry failed transactions

To reduce the likelihood of deadlock –

• minimize the use of locks – use higher isolation levels and
locking reads only when required

• keep transactions small and short in duration – less likely
to have two simultaneous ones

• take locks in a consistent order each time

CPSC 343: Database Theory and Practice • Fall 2024 110

MySQL Transactions

MySQL defaults –
• each statement is a transaction
• isolation level is REPEATABLE READ

Limitations –
• there are statements that can't be rolled back, and others

that involve an implicit commit
– e.g. data definition statements (CREATE TABLE, DROP TABLE, …)

– check the MySQL manual for details

• triggers cannot contain START TRANSACTION, COMMIT, or
ROLLBACK
– check the MySQL manual for details on what happens if a trigger

or the operation itself fails

CPSC 343: Database Theory and Practice • Fall 2024 111

Takeaways

• transactions should be considered when operations
involve more than one SQL statement
– locking reads provide targeted protection at lower isolation levels

• which isolation level to use?
– short answer – READ COMMITTED and REPEATABLE READ

(MySQL default) are most common
– longer answer

–

– but there are many subtleties and implementations vary between
DBMSes – for serious use, consult the MySQL documentation

https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html

